Li K, Hao Z, Zhao X, et al. SARS-CoV-2 infection-induced immune responses: friends or foes? Scand J Immunol. 2020. https://doi.org/10.1111/sji.12895.
Article
PubMed
PubMed Central
Google Scholar
Goldstein JL. The Spanish 1918 Flu and the COVID-19 disease: the art of remembering and foreshadowing pandemics. Cell. 2020;183(2):285–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling LJ, Lu Y, Zhang YY, et al. Flavonoids from Houttuynia cordata attenuate H1N1-induced acute lung injury in mice via inhibition of influenza virus and Toll-like receptor signalling. Phytomedicine. 2020;67:153150.
Article
CAS
PubMed
Google Scholar
Zhi H, Jin X, Zhu H, et al. Exploring the effective materials of flavonoids-enriched extract from Scutellaria baicalensis roots based on the metabolic activation in influenza A virus induced acute lung injury. J Pharm Biomed Anal. 2020;177:112876.
Article
CAS
PubMed
Google Scholar
Lo CY, Tang YS, Shaw PC. Structure and function of influenza virus ribonucleoprotein. Subcell Biochem. 2018;88:95–128.
Article
CAS
PubMed
Google Scholar
Pizzorno A, Padey B, Terrier O, et al. Drug repurposing approaches for the treatment of influenza viral infection: reviving old drugs to fight against a long-lived enemy. Front Immunol. 2019;10:531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu YJ, Yan YQ, Qin HQ, et al. Effects of different principles of Traditional Chinese Medicine treatment on TLR7/NF-kappaB signaling pathway in influenza virus infected mice. Chin Med. 2018;13:42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhi HJ, Zhu HY, Zhang YY, et al. In vivo effect of quantified flavonoids-enriched extract of Scutellaria baicalensis root on acute lung injury induced by influenza A virus. Phytomedicine. 2019;57:105–16.
Article
CAS
PubMed
Google Scholar
Short KR, Kasper J, van der Aa S, et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Respir J. 2016;47(3):954–66.
Article
CAS
PubMed
Google Scholar
Ma Q, Huang W, Zhao J, et al. Liu Shen Wan inhibits influenza a virus and excessive virus-induced inflammatory response via suppression of TLR4/NF-kappaB signaling pathway in vitro and in vivo. J Ethnopharmacol. 2020;252:112584.
Article
CAS
PubMed
Google Scholar
Senthilkumar D, Rajukumar K, Kumar M, et al. Porcine reproductive and respiratory syndrome virus induces concurrent elevation of High Mobility Group Box-1 protein and pro-inflammatory cytokines in experimentally infected piglets. Cytokine. 2019;113:21–30.
Article
CAS
PubMed
Google Scholar
He J, Yuan R, Cui X, et al. Anemoside B4 protects against Klebsiella pneumoniae-and influenza virus FM1-induced pneumonia via the TLR4/Myd88 signaling pathway in mice. Chin Med. 2020;15:68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doganyigit Z, Okan A, Kaymak E, et al. Investigation of protective effects of apilarnil against lipopolysaccharide induced liver injury in rats via TLR 4/ HMGB-1/ NF-kappaB pathway. Biomed Pharmacother. 2020;125:109967.
Article
CAS
PubMed
Google Scholar
Sun Y, Su J, Liu Z, et al. Aflatoxin B1 promotes influenza replication and increases virus related lung damage via activation of TLR4 signaling. Front Immunol. 2018;9:2297.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garg S, Garg M, Prabhakar N, et al. Unraveling the mystery of COVID-19 cytokine storm: from skin to organ systems. Dermatol Ther. 2020. https://doi.org/10.1111/dth.13859.
Article
PubMed
PubMed Central
Google Scholar
Ren JL, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment [J]. Pharmacol Res. 2020;155:104743.
Article
CAS
PubMed
PubMed Central
Google Scholar
CP Commission. Chinese pharmacopoeia. Beijing: China Medical Science Press; 2010. p. 228.
Google Scholar
Hsieh W-L, Lin Y-K, Tsai C-N, et al. Indirubin, an acting component of indigo naturalis, inhibits EGFR activation and EGF-induced CDC25B gene expression in epidermal keratinocytes. J Dermatol Sci. 2012;67(2):140–6.
Article
CAS
PubMed
Google Scholar
Lin Y-K, Leu Y-L, Yang S-H, et al. Anti-psoriatic effects of indigo naturalis on the proliferation and differentiation of keratinocytes with indirubin as the active component. J Dermatol Sci. 2009;54(3):168–74.
Article
CAS
PubMed
Google Scholar
lǚ J. Shijinmo variorum of clinic practices with double-herb prescriptions. People's Medical Publishing House, 2002.
Naganuma M. Treatment with indigo naturalis for inflammatory bowel disease and other immune diseases. Immunol Med. 2019;42(1):16–21.
Article
PubMed
Google Scholar
Gu S, Xue Y, Gao Y, et al. Mechanisms of indigo naturalis on treating ulcerative colitis explored by GEO gene chips combined with network pharmacology and molecular docking. Sci Rep. 2020;10(1):15204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin SC, Kappes MA, Chen MC, et al. Distinct susceptibility and applicability of MDCK derivatives for influenza virus research. PLoS ONE. 2017;12(2):e0172299.
Article
PubMed
PubMed Central
CAS
Google Scholar
Konevtsova OV, Roshal DS, Losdorfer BoZic A, et al. Hidden symmetry of the anomalous bluetongue virus capsid and its role in the infection process. Soft Matter. 2019;15(38):7663–71.
Article
CAS
PubMed
Google Scholar
Huang D, Peng WJ, Ye Q, et al. Serum-free suspension culture of MDCK cells for production of influenza H1N1 vaccines. PLoS ONE. 2015;10(11):e0141686.
Article
PubMed
PubMed Central
CAS
Google Scholar
Larson KC, Lipko M, Dabrowski M, et al. Gng12 is a novel negative regulator of LPS-induced inflammation in the microglial cell line BV-2. Inflamm Res. 2010;59(1):15–22.
Article
CAS
PubMed
Google Scholar
Zhu H, Lu X, Ling L, et al. Houttuynia cordata polysaccharides ameliorate pneumonia severity and intestinal injury in mice with influenza virus infection. J Ethnopharmacol. 2018;218:90–9.
Article
CAS
PubMed
Google Scholar
Xu YY, Zhang YY, Ou YY, et al. Houttuyniacordata Thunb. polysaccharides ameliorates lipopolysaccharide-induced acute lung injury in mice. J Ethnopharmacol. 2015;173:81–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodgins B, Pillet S, Landry N, et al. Prime-pull vaccination with a plant-derived virus-like particle influenza vaccine elicits a broad immune response and protects aged mice from death and frailty after challenge. Immun Ageing. 2019;16:27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thornton HV, Turner KME, Harrison S, et al. Assessing the potential of upper respiratory tract point-of-care testing: a systematic review of the prognostic significance of upper respiratory tract microbes. Clin Microbiol Infect. 2019;25(11):1339–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Hu B, Xu J, et al. Influenza A virus infection induces liver injury in mice. Microb Pathog. 2019;137:103736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong T, Wu YQ, Ni WJ, et al. The potential insights of Traditional Chinese Medicine on treatment of COVID-19. Chin Med. 2020;15:51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau K-M, Lee K-M, Koon C-M, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol. 2008;118(1):79–85.
Article
PubMed
PubMed Central
Google Scholar
Lau T, Leung P, Wong E, et al. Using herbal medicine as a means of prevention experience during the SARS crisis. Am J Chinese Med. 2005;33(03):345–56.
Article
CAS
Google Scholar
Peng J, Fan G, Wu Y. Isolation and purification of clemastanin B and indigoticoside A from Radix Isatidis by high-speed counter-current chromatography. J Chromatogr A. 2005;1091(1):89–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Qi F. Traditional Chinese medicine to treat COVID-19: the importance of evidence-based research. Drug Discov Ther. 2020;14(3):149–50.
Article
CAS
PubMed
Google Scholar
Li K, Chen X, Zhong J, et al. The effects of the Xijiao Dihuang decoction combined with Yinqiao powder on miRNA-mRNA profiles in mice infected with influenza a virus. BMC Complement Med Ther. 2020;20(1):286.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin YK, See LC, Huang YH, et al. Efficacy and safety of Indigo naturalis extract in oil (Lindioil) in treating nail psoriasis: a randomized, observer-blind, vehicle-controlled trial. Phytomedicine. 2014;21(7):1015–20.
Article
CAS
PubMed
Google Scholar
Lin YK, Chen HW, Yang SH, et al. Protective effect of indigo naturalis extract against oxidative stress in cultured human keratinocytes. J Ethnopharmacol. 2012;139(3):893–6.
Article
PubMed
Google Scholar
Liu Z, Yang ZQ, Xiao H. Antiviral activity of the effective monomers from Folium isatidis against influenza virus in vivo. Virol Sin. 2010;25(6):445–51.
Article
CAS
PubMed
Google Scholar
Lee CL, Wang CM, Hu HC, et al. Indole alkaloids indigodoles A–C from aerial parts of Strobilanthes cusia in the traditional Chinese medicine Qing Dai have anti-IL-17 properties. Phytochemistry. 2019;162:39–46.
Article
CAS
PubMed
Google Scholar
Zhang M, Ding X, Kang J, et al. Marine natural product for pesticide candidate: pulmonarin alkaloids as novel antiviral and anti-phytopathogenic-fungus agents. J Agric Food Chem. 2020;68(41):11350–7.
Article
CAS
PubMed
Google Scholar
Gao P, Wang L, Zhao L, et al. Anti-inflammatory quinoline alkaloids from the root bark of Dictamnus dasycarpus. Phytochemistry. 2020;172:112260.
Article
CAS
PubMed
Google Scholar
Kim M, Park KH, Kim YB. Identifying active compounds and targets of Fritillariae thunbergii against influenza-associated inflammation by network pharmacology analysis and molecular docking. Molecules. 2020;25(17):3853.
Article
CAS
PubMed Central
Google Scholar
Yamashiro R, Misawa T, Sakudo A. Key role of singlet oxygen and peroxynitrite in viral RNA damage during virucidal effect of plasma torch on feline calicivirus. Sci Rep. 2018;8(1):17947.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdul-Cader MS, Ahmed-Hassan H, Amarasinghe A, et al. Toll-like receptor (TLR)21 signalling-mediated antiviral response against avian influenza virus infection correlates with macrophage recruitment and nitric oxide production. J Gen Virol. 2017;98(6):1209–23.
Article
CAS
PubMed
Google Scholar
El Sahly HM, Makedonas G, Corry D, et al. An evaluation of cytokine and cellular immune responses to heterologous prime-boost vaccination with influenza A/H7N7-A/H7N9 inactivated vaccine. Hum Vaccin Immunother. 2020. https://doi.org/10.1080/21645515.2020.1750910.
Article
PubMed
PubMed Central
Google Scholar
Yagmurdur H, Binnetoglu K, Astarci HM, et al. Propofol attenuates cytokine-mediated upregulation of expression of inducible nitric oxide synthase and apoptosis during regeneration post-partial hepatectomy. Acta Cir Bras. 2017;32(5):396–406.
Article
PubMed
Google Scholar
Adams C, Sawh F, Green-Johnson JM, et al. Characterization of casein-derived peptide bioactivity: differential effects on angiotensin-converting enzyme inhibition and cytokine and nitric oxide production. J Dairy Sci. 2020;103(7):5805–15.
Article
CAS
PubMed
Google Scholar
Wu J. Tackle the free radicals damage in COVID-19. Nitric Oxide. 2020;102:39–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciaglia E, Malfitano AM, Laezza C, et al. Immuno-modulatory and anti-inflammatory effects of Dihydrogracilin A, a Terpene derived from the marine sponge Dendrilla membranosa. Int J Mol Sci. 2017;18(8):1643.
Article
PubMed Central
CAS
Google Scholar
Talaat KR, Halsey NA, Cox AB, et al. Rapid changes in serum cytokines and chemokines in response to inactivated influenza vaccination [J]. Influenza Other Respir Viruses. 2018;12(2):202–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. J Exp Med. 2020. https://doi.org/10.1084/jem.20200678.
Article
PubMed
PubMed Central
Google Scholar
Sumikoshi M, Hashimoto K, Kawasaki Y, et al. Human influenza virus infection and apoptosis induction in human vascular endothelial cells [J]. J Med Virol. 2008;80(6):1072–8.
Article
CAS
PubMed
Google Scholar
Teijaro John R, Walsh Kevin B, Cahalan S, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146(6):980–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
VanPatten S, Al-Abed Y. High mobility group box-1 (HMGb1): current wisdom and advancement as a potential drug target. J Med Chem. 2018;61(12):5093–107.
Article
CAS
PubMed
Google Scholar
Vijayakumar EC, Bhatt LK, Prabhavalkar KS. High mobility group box-1 (HMGB1): a potential target in therapeutics. Curr Drug Targets. 2019;20(14):1474–85.
Article
CAS
PubMed
Google Scholar
Zheng J, Perlman S. Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Curr Opin Virol. 2018;28:43–52.
Article
CAS
PubMed
Google Scholar
Tao X, Sun X, Yin L, et al. Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition. Free Radic Biol Med. 2015;84:103–15.
Article
CAS
PubMed
Google Scholar
Sohn KM, Lee SG, Kim HJ, et al. COVID-19 Patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J Korean Med Sci. 2020;35(38):e343.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang QW, Su Y, Sheng JT, et al. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-kappaB signal pathways. PLoS ONE. 2018;13(1):e0191793.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dai JP, Wang QW, Su Y, et al. Emodin inhibition of influenza A virus replication and influenza viral pneumonia via the Nrf2, TLR4, p38/JNK and NF-kappaB pathways. Molecules. 2017;22(10):1754.
Article
PubMed Central
CAS
Google Scholar
Ren Z, Li J, Song X, et al. The regulation of inflammation and oxidative status against lung injury of residue polysaccharides by Lentinula edodes. Int J Biol Macromol. 2018;106:185–92.
Article
CAS
PubMed
Google Scholar
Kosai K, Seki M, Yanagihara K, et al. Elevated levels of high mobility group box chromosomal protein-1 (HMGB-1) in sera from patients with severe bacterial pneumonia coinfected with influenza virus. Scand J Infect Dis. 2008;40(4):338–42.
Article
CAS
PubMed
Google Scholar
Deng Y, Yang Z, Gao Y, et al. Toll-like receptor 4 mediates acute lung injury induced by high mobility group box-1. PLoS ONE. 2013;8(5):e64375.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fagone P, Shedlock DJ, Bao H, et al. Molecular adjuvant HMGB1 enhances anti-influenza immunity during DNA vaccination. Gene Ther. 2011;18(11):1070–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–79.
Article
CAS
PubMed
Google Scholar
Diao JX, Ou JY, Dai H, et al. Antioxidant and antiapoptotic polyphenols from green tea extract ameliorate CCl4-induced acute liver injury in mice. Chin J Integr Med. 2020;26(10):736–44.
Article
CAS
PubMed
Google Scholar
Koivisto AE, Olsen T, Paur I, et al. Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: a randomized controlled trial. PLoS ONE. 2019;14(6):e0217895.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Jin Y, Yang Y, et al. Epithelial dysfunction in lung diseases: effects of amino acids and potential mechanisms. Adv Exp Med Biol. 2020;1265:57–70.
Article
PubMed
Google Scholar
Tan L, Tu Y, Wang K, et al. Exploring protective effect of Glycine tabacina aqueous extract against nephrotic syndrome by network pharmacology and experimental verification. Chin Med. 2020;15:79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khazdair MR, Boskabady MH. A double-blind, randomized, placebo-controlled clinical trial on the effect of carvacrol on serum cytokine levels and pulmonary function tests in sulfur mustard induced lung injury. Cytokine. 2019;113:311–8.
Article
CAS
PubMed
Google Scholar
Nakayama T, Kumagai T, Kashiwagi Y, et al. Cytokine production in whole-blood cultures following immunization with an influenza vaccine. Hum Vaccin Immunother. 2018;14(12):2990–8.
Article
PubMed
PubMed Central
Google Scholar
Rudd JM, Pulavendran S, Ashar HK, et al. Neutrophils induce a novel chemokine receptors repertoire during influenza pneumonia. Front Cell Infect Microbiol. 2019;9:108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Yang P, Zhong Y, et al. Monoclonal antibody against CXCL-10/IP-10 ameliorates influenza A (H1N1) virus induced acute lung injury. Cell Res. 2013;23(4):577–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Liu G, Chen J, et al. Ponatinib protects mice from lethal influenza infection by suppressing cytokine storm. Front Immunol. 2019;10:1393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Li TN, Ran Q, et al. Strobilanthes cusia (Nees) Kuntze, a multifunctional traditional Chinese medicinal plant, and its herbal medicines: a comprehensive review. J Ethnopharmacol. 2021;265:113325.
Article
CAS
PubMed
Google Scholar
Plitzko I, Mohn T, Sedlacek N, et al. Composition of Indigo naturalis. Planta Med. 2009;75(8):860–3.
Article
CAS
PubMed
Google Scholar
Xu ZL, Huang XJ. Therapeutic approaches for acute promyelocytic leukaemia: moving towards an orally chemotherapy-free era. Front Oncol. 2020;10:586004.
Article
PubMed
PubMed Central
Google Scholar
Sekhon S, Koo J. Indirubin: a novel topical agent in the treatment of psoriasis. Br J Dermatol. 2018;178(1):21.
Article
CAS
PubMed
Google Scholar