Alisi A, Balsano C. Enhancing the efficacy of hepatocellular carcinoma chemotherapeutics with natural anticancer agents. Nutr Rev. 2010;65(12):550–3.
Article
Google Scholar
Chacko S. Hepatocellular carcinoma: a life-threatening disease. Biomed Pharmacother. 2016;84:1679–88.
Article
PubMed
Google Scholar
Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, Wang L, Zhou J, Qiu SJ, Li Y, Ji XN. A decade’s studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2004;130(4):187–96.
Article
PubMed
Google Scholar
Palomares T, García-Alonso I, San Isidro R, Méndez J. All-trans-retinoic acid counteract the tumor-stimulating effect of hepatectomy and increases survival of rats bearing liver metastases. J Surg Res. 2014;188(1):143–51.
Article
CAS
PubMed
Google Scholar
Wu QJ, Gong CY, Luo ST, Zhang DM, Zhang S, Shi HS, Lu L, Yan HX, He SS, Li DD, Yang L. AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model. BMC Cancer. 2012;12(1):129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Man S, Gao W, Wei C. Anticancer drugs from traditional toxic Chinese medicines. Phytother Res. 2012;26(10):1449–65.
Article
CAS
PubMed
Google Scholar
Lee MS, Yuet-Wa JC, Kong SK, Yu B, Eng-Choon VO, Nai-Ching HW. Effects of polyphyllin D, a steroidal saponin in Paris polyphylla, in growth inhibition of human breast cancer cells and in xenograft. Cancer Biol Ther. 2005;4(11):1248–54.
Article
CAS
PubMed
Google Scholar
Shoemaker M, Hamilton B, Dairkee SH, Cohen I. In vitro anticancer activity of twelve Chinese medicinal herbs. Phytother Res. 2005;19(7):649–51.
Article
PubMed
Google Scholar
Kang LP, Liu YX, Eichhorn T, Dapat E, Yu HS, Zhao Y, Xiong CQ, Liu C, Efferth T. Polyhydroxylated Steroidal Glycosides from Paris polyphylla. J Nat Prod. 2012;75(6):1201–5.
Article
CAS
PubMed
Google Scholar
Li FR, Jiao P, Yao ST, Sang H, Qin SC, Zhang W, Zhang YB. Paris polyphylla Smith Extract Induces Apoptosis and Activates Cancer Suppressor Gene Connexin26 Expression. Asian Pac J Cancer Prev. 2012;13(1):205–9.
Article
PubMed
Google Scholar
Zhao Y, Kang LP, Liu YX, Liang YG, Tan DW, Yu ZY, Cong YW. Steroidal saponins from the rhizome of Paris polyphylla and their cytotoxic activities. Planta Med. 2008;75(4):356–63.
Article
PubMed
CAS
Google Scholar
Sun J, Liu BR, Hu WJ, Yu LX. In vitro anticancer activity of aqueous extracts and ethanol extracts of fifteen traditional Chinese medicines on human digestive tumor cell lines. Phytother Res. 2010;21(11):1102–4.
Article
CAS
Google Scholar
Zhang C, Jia X, Bao J, Chen S, Wang K, Zhang Y, Li P, Wan JB, Su H, Wang Y, Mei Z. Polyphyllin VII induces apoptosis in HepG2 cells through ROS-mediated mitochondrial dysfunction and MAPK pathways. BMC Complement Altern Med. 2016;16:58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang C, Jia X, Wang K, Bao J, Li P, Chen M, Wan JB, Su H, Mei Z. Polyphyllin VII Induces an Autophagic Cell Death by Activation of the JNK Pathway and Inhibition of PI3K/AKT/mTOR Pathway in HepG2 Cells. PLoS ONE. 2016;11(1):e0147405.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang W, Zhang D, Ma X, Liu Z, Li F. Paris saponin VII suppressed the growth of human cervical cancer Hela cells. Eur J Med Res. 2014;19(1):41–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Y, Fan L, Sun Y, Miao X, Zhang F, Meng J, Han J, Zhang D, Zhang R, Yue Z. Paris saponin VII from trillium tschonoskii reverses multidrug resistance of adriamycin-resistant MCF-7/ADR cells via P-glycoprotein inhibition and apoptosis augmentation. J Ethnopharmacol. 2014;154(3):728–34.
Article
CAS
PubMed
Google Scholar
Li Y, Sun Y, Fan L, Zhang F, Meng J, Han J, Guo X, Zhang D, Zhang R, Yue Z. Paris saponin VII inhibits growth of colorectal cancer cells through Ras signaling pathway. Biochem Pharmacol. 2014;88(2):150–7.
Article
CAS
PubMed
Google Scholar
Feng F, Cheng P, Wang C, Wang Y, Wang W. Polyphyllin I and VII potentiate the chemosensitivity of A549/DDP cells to cisplatin by enhancing apoptosis, reversing EMT and suppressing the CIP2A/AKT/mTOR signaling axis. Oncol Lett. 2019;18(5):5428–36.
CAS
PubMed
PubMed Central
Google Scholar
Ahmad B, Rehman SU, Azizullah A, Khan MF, Din SR, Ahmad M, Ali A, Tahir N, Azam N, Gamallat Y, Rahman KU. Molecular mechanisms of anticancer activities of Polyphyllin VII. Chem Biol Drug Des. 2020;97(4):914–29.
Article
CAS
Google Scholar
Zhang C, Li C, Jia X, Wang K, Tu Y, Wang R, Liu K, Lu T. In vitro and in vivo anti-inflammatory effects of polyphyllin vii through downregulating MAPK and NF-κB Pathways. Molecules. 2019;24(5):875.
Article
PubMed Central
CAS
Google Scholar
Wang W, Liu Y, You L, Sun M, Ni J. Inhibitory effects of Paris saponin I, II, VI and VII on HUVEC cells through regulation of VEGFR2, PI3K/AKT/mTOR, Src/eNOS, PLCγ/ERK/MERK, and JAK2-STAT3 pathways. Biomed Pharmacother. 2020;131:110750.
Article
CAS
PubMed
Google Scholar
Bailey JM, Creamer BA. What a fish can learn from a mouse: principles and strategies for modeling human cancer in mice. Zebrafish. 2009;6(4):329–37.
Article
CAS
PubMed
Google Scholar
Jung DW, Oh ES, Park SH, Chang YT, Kim CH, Choi SY. A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening. Mol Biosyst. 2012;8(7):1930–9.
Article
CAS
PubMed
Google Scholar
Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, Partecke LI, Heidecke CD, Lerch MM. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer. 2009;9:128.
Article
PubMed
PubMed Central
Google Scholar
Amatruda JF, Shepard JL, Stern HM, Zon LI. Zebrafish as a cancer model system. Cancer Cell. 2002;1(3):229–31.
Article
CAS
PubMed
Google Scholar
Haldi M, Ton C, Seng WL, McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis. 2006;9(3):139–51.
Article
PubMed
Google Scholar
Konantz M, Balci TB, Hartwig UF, Dellaire G, André MC, Berman JN, Lengerke C. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci. 2012;1266:124–37.
Article
PubMed
Google Scholar
Lieschke GJ, Trede NS. Fish immunology. Curr Biol. 2009;19(16):R678–82.
Article
CAS
PubMed
Google Scholar
Stoletov K, Klemke R. Catch of the day: zebrafish as a human cancer model. Oncogene. 2008;27(33):4509–20.
Article
CAS
PubMed
Google Scholar
He S, Lamers GE, Beenakker JW, Cui C, Ghotra VP, Danen EH, Meijer AH, Spaink HP, Snaar-Jagalska BE. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol. 2012;227(4):431–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drabsch Y, He S, Zhang L, Snaar-Jagalska BE, ten Dijke P. Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res. 2013;15(6):R106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langheinrich U. Zebrafish: A new model on the pharmaceutical catwalk. Bioessays. 2003;25(9):904–12.
Article
CAS
PubMed
Google Scholar
Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307–18.
Article
CAS
PubMed
Google Scholar
Tran TC, Sneed B, Haider J, Blavo D, White A, Aiyejorun T, Baranowski TC, Rubinstein AL, Doan TN, Dingledine R, et al. Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res. 2007;67(23):11386–92.
Article
CAS
PubMed
Google Scholar
He Q, Liu K, Wang S, Hou H, Yuan Y, Wang X. Toxicity induced by emodin on zebrafish embryos. Drug Chem Toxicol. 2012;35(2):149–54.
Article
CAS
PubMed
Google Scholar
Weng WT, Huang SC, Ma YL, Chan HH, Lin SW, Wu JC, Wu CY, Wen ZH, Wang EM, Wu CL, Tai MH. α-Melanocyte-stimulating hormone inhibits angiogenesis through attenuation of VEGF/VEGFR2 signaling pathway. Biochim Biophys Acta. 2014;1840(6):1850–60.
Article
CAS
PubMed
Google Scholar
Proulx K, Lu A, Sumanas S. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. Dev Biol. 2010;348(1):34–46.
Article
CAS
PubMed
Google Scholar
Li D, Wei Y, Wang D, Gao H, Liu K. MicroRNA-26b suppresses the metastasis of non-small cell lung cancer by targeting MIEN1 via NF-κB/MMP-9/VEGF pathways. Biochem Biophys Res Commun. 2016;472(3):465–70.
Article
CAS
PubMed
Google Scholar
Li D, Wei Y, Wang D, Gao H, Liu K. MicroRNA-26b inhibits the tumor growth of human liver cancer through the PI3K/Akt and NF-κB/MMP-9/VEGF pathways. Oncol Rep. 2018;39:2288–96.
Google Scholar
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.
Article
CAS
PubMed
Google Scholar
Zhang YY, Chen B, Ding YQ. Metastasis-associated Factors Facilitating the Progression of Colorectal Cancer. Asian Pac J Cancer Prev. 2012;13(6):2437–44.
Article
PubMed
Google Scholar
Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer. 2004;4(6):448–56.
Article
CAS
PubMed
Google Scholar
Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7(11):834–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SL, Rouhi P, Jensen LD, Zhang D, Ji H, Hauptmann G, Ingham P, Cao Y. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci USA. 2009;106(46):19485–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang H, Wu W, Zhang F, Liu S, Wang R, Sun Y, Tong T, Jing X. Folate -targeted paclitaxel-conjugated polymeric micelles inhibits pulmonary metastatic hepatoma in experimental murine H22 metastasis models. Int J Nanomed. 2014;9:2019–30.
Google Scholar
Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.
Article
CAS
PubMed
Google Scholar
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.
Article
CAS
PubMed
Google Scholar
Moshal KS, Ferri-Lagneau KF, Leung T. Zebrafish model: worth considering in defining tumor angiogenesis. Trends Cardiovasc Med. 2010;20(4):114–9.
Article
CAS
PubMed
Google Scholar
Hsieh SC, Tsai JP, Yang SF, Tang MJ, Hsieh YH. Metformin inhibits the invasion of human hepatocellular carcinoma cells and enhances the chemosensitivity to sorafenib through a downregulation of the ERK/JNK-mediated NF-κB-dependent pathway that reduces uPA and MMP-9 expression. Amino Acids. 2014;46(12):2809–22.
Article
CAS
PubMed
Google Scholar
Shin SY, Kim CG, Jung YJ, Lim Y, Lee YH. The UPR inducer DPP23 inhibits the metastatic potential of MDA-MB-231 human breast cancer cells by targeting the Akt–IKK–NF-κB–MMP-9 axis. Sci Rep. 2016;6:34134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alidzanovic L, Starlinger P, Schauer D, Maier T, Feldman A, Buchberger E, Stift J, Koeck U, Pop L, Gruenberger B, Gruenberger T. The VEGF rise in blood of bevacizumab patients is not based on tumor escape but a host-blockade of VEGF clearance. Oncotarget. 2016;7(35):57197–212.
Article
PubMed
PubMed Central
Google Scholar