Wang H, Liu C, Zhai J, Shang H. Niuhuang Jiangya Preparation (a traditional Chinese patent medicine) for essential hypertension: a systematic review. Complement Ther Med. 2017;31:90–9.
Article
PubMed
Google Scholar
Li Y, Yang L, Wang L, Zhang M, Huang Z, Deng Q, et al. Burden of hypertension in China: a nationally representative survey of 174,621 adults. Int J Cardiol. 2017;227:516–23.
Article
PubMed
Google Scholar
Wolf-Maier K, Cooper RS, Banegas JR, Giampaoli S, Hense HW, Joffres M, et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA. 2003;289(18):2363–9.
Article
PubMed
Google Scholar
Xiong X, Wang P, Li X, Zhang Y. Shenqi pill, a traditional Chinese herbal formula, for the treatment of hypertension: a systematic review. Complement Ther Med. 2015;23(3):484–93.
Article
PubMed
Google Scholar
Wu W, Yang S, Liu P, Yin L, Gong Q, Zhu W. Systems pharmacology-based strategy to investigate pharmacological mechanisms of radix puerariae for treatment of hypertension. Front Pharmacol. 2020;11:345.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye XT, Zhang BX, Wang HH, He SB, Zhang XH, Wang Y. Study on mechanism for anti-hypertension efficacy of Eucommiae Cortex through assistant analysis systems for acting mechanisms of traditional Chinese medicine. China J Chin Materia Medica. 2015;40(19):3718–22.
Google Scholar
Lan TJ, Liang WP, Feng QY, Yun CX, Guo HW. Multi-index integrated evaluation method optimizes water-extraction of Leigong Antihypertensive Granules. J Chin Med Mater. 2018;9:2171–4.
Google Scholar
Xin RB, Meng GY, He L, Lu J, Huang WY, Ye LL, et al. Sampling survey of hypertension in Zhuang nationality in Tiandong county. Guangxi Med J. 2011;33(8):963–5.
Google Scholar
Razali NNM, Ng CT, Fong LY. Cardiovascular protective effects of centella asiatica and its triterpenes: a review. Planta Med. 2019;85(16):1203–15.
Article
PubMed
CAS
Google Scholar
Astutik FEF, Fauzia Zuhroh D, Rizqi Lazuardi Ramadhan M. The effect of gotu kola (Centella asiatica L.) tea on blood pressure of hypertension. Enferm Clin. 2021;31(Suppl 2):195-S8.
Google Scholar
Bunbupha S, Prachaney P, Kukongviriyapan U, Kukongviriyapan V, Welbat JU, Pakdeechote P. Asiatic acid alleviates cardiovascular remodelling in rats with L-NAME-induced hypertension. Clin Exp Pharmacol Physiol. 2015;42(11):1189–97.
Article
PubMed
CAS
Google Scholar
Liao MY, Chuang CY, Hsieh MJ, Chou YE, Lin CW, Chen WR, et al. Antimetastatic effects of Eclipta prostrata extract on oral cancer cells. Environ Toxicol. 2018;33(9):923–30.
PubMed
CAS
Google Scholar
Chung IM, Rajakumar G, Lee JH, Kim SH, Thiruvengadam M. Ethnopharmacological uses, phytochemistry, biological activities, and biotechnological applications of Eclipta prostrata. Appl Microbiol Biotechnol. 2017;101(13):5247–57.
Article
PubMed
CAS
Google Scholar
Sa F, Gao JL, Fung KP, Zheng Y, Lee SM, Wang YT. Anti-proliferative and pro-apoptotic effect of Smilax glabra Roxb. extract on hepatoma cell lines. Chem Biol Interact. 2008;171(1):1–14.
Article
PubMed
CAS
Google Scholar
Cai Y, Tu J, Pan S, Jiang J, Shou Q, Ling Y, et al. Medicinal effect and its JP2/RyR2-based mechanism of Smilax glabra flavonoids on angiotensin II-induced hypertrophy model of cardiomyocytes. J Ethnopharmacol. 2015;169:435–40.
Article
PubMed
CAS
Google Scholar
Wermuth CG. Multitargeted drugs: the end of the “one-target-one-disease”. philosophy? Drug Discov Today. 2004;9(19):826–7.
Article
PubMed
Google Scholar
Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–20.
Article
PubMed
Google Scholar
Li H, Zhao L, Zhang B, Jiang Y, Wang X, Guo Y, et al. A network pharmacology approach to determine active compounds and action mechanisms of ge-gen-qin-lian decoction for treatment of type 2 diabetes. Evid Based Complement Alternat Med. 2014;2014:495840.
PubMed
PubMed Central
Google Scholar
Li S, Chen Y, Ding Q, Dai J, Duan X, Hu Y, et al. Network pharmacology evaluation method guidance – Draft. World J Tradit Chin Med. 2021;7(1):146–54.
Google Scholar
Tao W, Xu X, Wang X, Li B, Wang Y, Li Y, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol. 2013;145(1):1–10.
Article
PubMed
CAS
Google Scholar
Lan T, Chang M, Li Q, Liang W, Yun C, Guo H. Optimization of formation process for leigong antihypertensive granules by central composite design-respones surface methodology based on CRITIC Weighted Evaluation. J Chin Med Mater. 2019;42(6):1356–9.
Google Scholar
Lan T, Li Q, Chang M, Yin C, Zhu D, Wu Z, et al. Lei-gong-gen formula granule attenuates hyperlipidemia in rats via cGMP-PKG signaling pathway. J Ethnopharmacol. 2020;260:112989.
Article
PubMed
CAS
Google Scholar
Giudicelli JF, Freslon JL, Glasson S, Richer C. Captopril and hypertension development in the SHR. Clin Exp Hypertens. 1980;2(6):1083–96.
Article
PubMed
CAS
Google Scholar
Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T. TCMID: Traditional Chinese Medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 2013;41(Database issue):D1089-95.
PubMed
Google Scholar
Liu Z, Guo F, Wang Y, Li C, Zhang X, Li H, et al. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine. Sci Rep. 2016;6:21146.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci. 2012;13(6):6964–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gong J, Cai C, Liu X, Ku X, Jiang H, Gao D, et al. ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics. 2013;29(14):1827–9.
Article
PubMed
CAS
Google Scholar
Dai HJ, Wu JC, Tsai RT, Pan WH, Hsu WL. T-HOD: a literature-based candidate gene database for hypertension, obesity and diabetes. Database. 2013;2013:bas061.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
PubMed
PubMed Central
CAS
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-D13.
Article
CAS
Google Scholar
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
PubMed
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.
Article
PubMed
CAS
Google Scholar
Arif M, Sadayappan S, Becker RC, Martin LJ, Urbina EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res. 2019;42(8):1099–113.
PubMed
CAS
Google Scholar
Makani H, Bangalore S, Romero J, Htyte N, Berrios RS, Makwana H, et al. Peripheral edema associated with calcium channel blockers: incidence and withdrawal rate–a meta-analysis of randomized trials. J Hypertens. 2011;29(7):1270–80.
Article
PubMed
CAS
Google Scholar
Raebel MA. Hyperkalemia associated with use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Cardiovasc Ther. 2012;30(3):e156-66.
Article
PubMed
CAS
Google Scholar
Xiong X, Yang X, Liu Y, Zhang Y, Wang P, Wang J. Chinese herbal formulas for treating hypertension in traditional Chinese medicine: perspective of modern science. Hypertens Res. 2013;36(7):570–9.
Article
PubMed
PubMed Central
Google Scholar
Banquet S, Delannoy E, Agouni A, Dessy C, Lacomme S, Hubert F, et al. Role of G(i/o)-Src kinase-PI3K/Akt pathway and caveolin-1 in beta(2)-adrenoceptor coupling to endothelial NO synthase in mouse pulmonary artery. Cell Signal. 2011;23(7):1136–43.
Article
PubMed
CAS
Google Scholar
Shah DI, Singh M. Effect of demethylasterriquinone b1 in hypertension associated vascular endothelial dysfunction. Int J Cardiol. 2007;120(3):317–24.
Article
PubMed
Google Scholar
Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta. 2002;1602(2):114–30.
PubMed
CAS
Google Scholar
Paravicini TM, Montezano AC, Yusuf H, Touyz RM. Activation of vascular p38MAPK by mechanical stretch is independent of c-Src and NADPH oxidase: influence of hypertension and angiotensin II. J Am Soc Hypertens. 2012;6(3):169–78.
Article
PubMed
CAS
Google Scholar
He H, Venema VJ, Gu X, Venema RC, Marrero MB, Caldwell RB. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem. 1999;274(35):25130–5.
Article
PubMed
CAS
Google Scholar
Gu JW, Fortepiani LA, Reckelhoff JF, Adair TH, Wang J, Hall JE. Increased expression of vascular endothelial growth factor and capillary density in hearts of spontaneously hypertensive rats. Microcirculation. 2004;11(8):689–97.
Article
PubMed
CAS
Google Scholar
Dorrance AM, Osborn HL, Grekin R, Webb RC. Spironolactone reduces cerebral infarct size and EGF-receptor mRNA in stroke-prone rats. Am J Physiol Regul Integr Comp Physiol. 2001;281(3):R944-50.
Article
PubMed
Google Scholar
Ushiro H, Cohen S. Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem. 1980;255(18):8363–5.
Article
PubMed
CAS
Google Scholar
Beltowski J, Lowicka E. EGF receptor as a drug target in arterial hypertension. Mini Rev Med Chem. 2009;9(5):526–38.
Article
PubMed
CAS
Google Scholar
Martin A, Perez-Giron JV, Hernanz R, Palacios R, Briones AM, Fortuno A, et al. Peroxisome proliferator-activated receptor-gamma activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress. J Hypertens. 2012;30(2):315–26.
Article
PubMed
CAS
Google Scholar
Clemow DB, Spitsbergen JM, McCarty R, Steers WD, Tuttle JB. Arterial nerve growth factor (NGF) mRNA, protein, and vascular smooth muscle cell NGF secretion in hypertensive and hyperactive rats. Exp Cell Res. 1998;244(1):196–205.
Article
PubMed
CAS
Google Scholar
Xiong X, Yang X, Duan L, Liu W, Zhang Y, Liu Y, et al. Traditional Chinese medicine suppresses left ventricular hypertrophy by targeting extracellular signal-regulated kinases signaling pathway in spontaneously hypertensive rats. Sci Rep. 2017;7:42965.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mukai Y, Sato S. Polyphenol-containing azuki bean (Vigna angularis) seed coats attenuate vascular oxidative stress and inflammation in spontaneously hypertensive rats. J Nutr Biochem. 2011;22(1):16–21.
Article
PubMed
CAS
Google Scholar
Kumai T, Takeba Y, Matsumoto N, Nakaya S, Tsuzuki Y, Yanagida Y, et al. Fasudil attenuates sympathetic nervous activity in the adrenal medulla of spontaneously hypertensive rats. Life Sci. 2007;81(15):1193–8.
Article
PubMed
CAS
Google Scholar
Crnkovic S, Egemnazarov B, Jain P, Seay U, Gattinger N, Marsh LM, et al. NPY/Y(1) receptor-mediated vasoconstrictory and proliferative effects in pulmonary hypertension. Br J Pharmacol. 2014;171(16):3895–907.
Article
PubMed
PubMed Central
CAS
Google Scholar
Michel MC, Rascher W. Neuropeptide Y: a possible role in hypertension? J Hypertens. 1995;13(4):385–95.
Article
PubMed
CAS
Google Scholar
Rajkumar R, Konishi K, Richards TJ, Ishizawar DC, Wiechert AC, Kaminski N, et al. Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2010;298(4):H1235-48.
Article
PubMed
CAS
Google Scholar
Xing W, Yan W, Liu P, Ji L, Li Y, Sun L, et al. A novel mechanism for vascular insulin resistance in normotensive young SHRs: hypoadiponectinemia and resultant APPL1 downregulation. Hypertension. 2013;61(5):1028–35.
Article
PubMed
CAS
Google Scholar
Yamamoto E, Yamashita T, Tanaka T, Kataoka K, Tokutomi Y, Lai ZF, et al. Pravastatin enhances beneficial effects of olmesartan on vascular injury of salt-sensitive hypertensive rats, via pleiotropic effects. Arterioscler Thromb Vasc Biol. 2007;27(3):556–63.
Article
PubMed
CAS
Google Scholar
Nemoto S, Kobayashi T, Taguchi K, Matsumoto T, Kamata K. Losartan improves aortic endothelium-dependent relaxation via proline-rich tyrosine kinase 2/Src/Akt pathway in type 2 diabetic Goto-Kakizaki rats. Am J Physiol Heart Circ Physiol. 2011;301(6):H2383-94.
Article
PubMed
CAS
Google Scholar
Chong KP, Rossall S, Atong M. In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against ganoderma boninense. J Agric Sci. 2009;1:2.
Google Scholar
Figueiredo-Gonzalez M, Reboredo-Rodriguez P, Gonzalez-Barreiro C, Simal-Gandara J, Valentao P, Carrasco-Pancorbo A, et al. Evaluation of the neuroprotective and antidiabetic potential of phenol-rich extracts from virgin olive oils by in vitro assays. Food Res Int. 2018;106:558–67.
Article
PubMed
CAS
Google Scholar
Ling WC, Ahmad F, Mat Ali R. Luteolin and 4-Hydroxybenzoic Acid from the Leaves Vitex negundo. 2005.
Chaudhary J, Jain A, Manuja R, Sachdeva S. A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. Int J Pharm Sci Rev Res. 2013;22:2.
Google Scholar
Leeya Y, Mulvany MJ, Queiroz EF, Marston A, Hostettmann K, Jansakul C. Hypotensive activity of an n-butanol extract and their purified compounds from leaves of Phyllanthus acidus (L.) Skeels in rats. Eur J Pharmacol. 2010;649(1–3):301–13.
Article
PubMed
CAS
Google Scholar
Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh Kumar C. Syringic acid (SA) A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed Pharmacother. 2018;108:547–57.
Article
PubMed
CAS
Google Scholar
Jalili T, Carlstrom J, Kim S, Freeman D, Jin H, Wu TC, et al. Quercetin-supplemented diets lower blood pressure and attenuate cardiac hypertrophy in rats with aortic constriction. J Cardiovasc Pharmacol. 2006;47(4):531–41.
Article
PubMed
CAS
Google Scholar
Kiran p, Denn.i M, Daniel M. Antidiabetic Principles, Phospholipids And Fixed Oil of Kodo Millet (Paspalum scrobiculatum Linn.). Indian Journal of Applied Research. 2011;4:13–5.
Article
Google Scholar
Kumar S, Prahalathan P, Raja B. Syringic acid ameliorates (L)-NAME-induced hypertension by reducing oxidative stress. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(12):1175–84.
Article
PubMed
CAS
Google Scholar
Benmalek Y, Yahia OA, Belkebir A, Fardeau ML. Anti-microbial and anti-oxidant activities of Illicium verum, Crataegus oxyacantha ssp monogyna and Allium cepa red and white varieties. Bioengineered. 2013;4(4):244–8.
Article
PubMed
PubMed Central
Google Scholar
Nakamura T, Okuyama E, Yamazaki M. Neurotropic components from star anise (Illicium verum Hook. fil.). Chem Pharm Bull (Tokyo). 1996;44(10):1908–14.
Article
CAS
Google Scholar
Thring TS, Hili P, Naughton DP. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern Med. 2009;9:27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rabelo TK, Guimaraes AG, Oliveira MA, Gasparotto J, Serafini MR, de Souza Araujo AA, et al. Shikimic acid inhibits LPS-induced cellular pro-inflammatory cytokines and attenuates mechanical hyperalgesia in mice. Int Immunopharmacol. 2016;39:97–105.
Article
PubMed
CAS
Google Scholar
Arif T. Salicylic acid as a peeling agent: a comprehensive review. Clin Cosmet Investig Dermatol. 2015;8:455–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Han J, He GS, Liu JW, Peter A, Chen PP. Anti-oxidant Effects of Xinjiang Red Raspberry Fruit Extracts in Spontaneously Hypertensive Rats. Chinese Journal of Hypertension. 2009;17(8):695–9.
Google Scholar
Meyers CD, Kamanna VS, Kashyap ML. Niacin therapy in atherosclerosis. Curr Opin Lipidol. 2004;15(6):659–65.
Article
PubMed
CAS
Google Scholar
Cho KH, Kim HJ, Rodriguez-Iturbe B, Vaziri ND. Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure. Am J Physiol Renal Physiol. 2009;297(1):F106-13.
Article
PubMed
CAS
Google Scholar
Cho KH, Kim HJ, Kamanna VS, Vaziri ND. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. Biochim Biophys Acta. 2010;1800(1):6–15.
Article
PubMed
CAS
Google Scholar
Linck VM, da Silva AL, Figueiro M, Piato AL, Herrmann AP, Dupont Birck F, et al. Inhaled linalool-induced sedation in mice. Phytomedicine. 2009;16(4):303–7.
Article
PubMed
CAS
Google Scholar
Pereira I, Severino P, Santos AC, Silva AM, Souto EB. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf B Biointerfaces. 2018;171:566–78.
Article
PubMed
CAS
Google Scholar
Camargo SB, Simoes LO, Medeiros CFA, de Melo Jesus A, Fregoneze JB, Evangelista A, et al. Antihypertensive potential of linalool and linalool complexed with beta-cyclodextrin: Effects of subchronic treatment on blood pressure and vascular reactivity. Biochem Pharmacol. 2018;151:38–46.
Article
PubMed
CAS
Google Scholar
Vera-Aviles M, Vantana E, Kardinasari E, Koh NL, Latunde-Dada GO. Protective Role of Histidine Supplementation Against Oxidative Stress Damage in the Management of Anemia of Chronic Kidney Disease. Pharmaceuticals (Basel). 2018;11:4.
Article
CAS
Google Scholar
Tuttle KR, Milton JE, Packard DP, Shuler LA, Short RA. Dietary amino acids and blood pressure: a cohort study of patients with cardiovascular disease. Am J Kidney Dis. 2012;59(6):803–9.
Article
PubMed
CAS
Google Scholar
Toba H, Nakamori A, Tanaka Y, Yukiya R, Tatsuoka K, Narutaki M, et al. Oral L-histidine exerts antihypertensive effects via central histamine H3 receptors and decreases nitric oxide content in the rostral ventrolateral medulla in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2010;37(1):62–8.
Article
PubMed
CAS
Google Scholar