Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol. 2012;42(1):102–11.
CAS
PubMed
Google Scholar
Rengasamy KRR, Khan H, Gowrishankar S, Lagoa RJL, Mahomoodally FM, Khan Z, et al. The role of flavonoids in autoimmune diseases: therapeutic updates. Pharmacol Ther. 2019;194:107–31.
CAS
PubMed
Google Scholar
Gao C, Liu L, Zhou Y, Bian Z, Wang S, Wang Y. Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease. Chin Med. 2019;14(1):23.
PubMed
PubMed Central
Google Scholar
Han R, Rostami-Yazdi M, Gerdes S, Mrowietz U. Triptolide in the treatment of psoriasis and other immune-mediated inflammatory diseases. Br J Clin Pharmacol. 2012;74(3):424–36.
CAS
PubMed
PubMed Central
Google Scholar
Brinker AM, Ma J, Lipsky PE, Raskin I. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry. 2007;68(6):732–66.
CAS
PubMed
Google Scholar
Huang S. The saint peasant’s scripture of materia medica (18357). Beijing: Publishing house for Chinese medine classics, republished in. 1982:309–10.
Chen BJ. Triptolide, A Novel immunosuppressive and anti-Inflammatory agent purified from a Chinese herb Tripterygium Wilfordii Hook F. Leukemia & Lymphoma. 2001;42(3):253–65.
CAS
Google Scholar
Luo D, Zuo Z, Zhao H, Tan Y, Xiao C. Immunoregulatory effects of Tripterygium wilfordii Hook F and its extracts in clinical practice. Front Med. 2019;13(5):556–63.
PubMed
Google Scholar
Tao X, Lipsky PE. The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook F. Rheumatic Disease Clinics of North America. 2000;26(1):29–50.
CAS
PubMed
Google Scholar
Ziaei S, Halaby R. Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: a mini review. Avicenna J Phytomed. 2016;6(2):149–64.
CAS
PubMed
PubMed Central
Google Scholar
Zhou Z, Yang Y, Ding J, Li Y, Miao Z. Triptolide: structural modifications, structure–activity relationships, bioactivities, clinical development and mechanisms. Nat Prod Rep. 2012;29(4):457–75.
CAS
PubMed
Google Scholar
McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017;389(10086):2328–37.
CAS
PubMed
Google Scholar
Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233–55.
CAS
PubMed
PubMed Central
Google Scholar
Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9(1):24–33.
CAS
PubMed
Google Scholar
Lefèvre S, Knedla A, Tennie C, Kampmann A, Wunrau C, Dinser R, et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med. 2009;15(12):1414–20.
PubMed
PubMed Central
Google Scholar
Kwok-keung Tong, Dan Yang, Eric Yuk-Tat Chan, Peter Kwong-Yuen Chiu, Kam-Shing Yau, Lau C-S. Downregulation of lymphocyte activity and human synovial fibroblast growth in rheumatoid arthritis by triptolide. Drug Dev Res. 1999;47:144–53.
Google Scholar
Su Z, Sun H, Ao M, Zhao C. Atomic force microscopy study of the anti-inflammatory effects of triptolide on rheumatoid arthritis fibroblast-like synoviocytes. Microsc Microanal. 2017;23(5):1002–12.
CAS
PubMed
Google Scholar
Yang Y, Ye Y, Qiu Q, Xiao Y, Huang M, Shi M, et al. Triptolide inhibits the migration and invasion of rheumatoid fibroblast-like synoviocytes by blocking the activation of the JNK MAPK pathway. Int Immunopharmacol. 2016;41:8–16.
PubMed
Google Scholar
Xie C, Jiang J, Liu J, Yuan G, Zhao Z. Triptolide suppresses human synoviocyte MH7A cells mobility and maintains redox balance by inhibiting autophagy. Biomed Pharmacother. 2019;115:108911.
CAS
PubMed
Google Scholar
Lu Y, Wang WJ, Leng JH, Cheng LF, Feng L, Yao HP. Inhibitory effect of triptolide on interleukin-18 and its receptor in rheumatoid arthritis synovial fibroblasts. Inflammation Research. 2008;57(6):260–5.
CAS
PubMed
Google Scholar
Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8(11):656–64.
CAS
Google Scholar
Ho T-Y, Santora K, Chen JC, Frankshun A-L, Bagnell CA. Effects of relaxin and estrogens on bone remodeling markers, receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG), in rat adjuvant-induced arthritis. Bone. 2011;48(6):1346–53.
CAS
PubMed
Google Scholar
Vega D, Maalouf NM, Sakhaee K. The role of receptor activator of nuclear factor-κB (RANK)/RANK ligand/osteoprotegerin: clinical implications. J Clin Endocrinol Metab. 2007;92(12):4514–21.
CAS
PubMed
Google Scholar
Liu C, Zhang Y, Kong X, Zhu L, Pang J, Xu Y, et al. Triptolide prevents bone destruction in the collagen-induced arthritis model of rheumatoid arthritis by targeting RANKL/RANK/OPG signal pathway. Evid Based Complement Altern Med. 2013;2013:626038.
Google Scholar
Wang S, Zuo S, Liu Z, Ji X, Yao Z, Wang X. Study on the efficacy and mechanism of triptolide on treating TNF transgenic mice with rheumatoid arthritis. Biomedicine & Pharmacotherapy. 2018;106:813–20.
CAS
Google Scholar
Wang S, Liu Z, Wang J, Wang Y, Liu J, Ji X, et al. The triptolide-induced apoptosis of osteoclast precursor by degradation of cIAP2 and treatment of rheumatoid arthritis of TNF-transgenic mice. Phytother Res. 2019;33(2):342–9.
CAS
PubMed
Google Scholar
Konttinen YT, Ainola M, Valleala H, Ma J, Ida H, Mandelin J, et al. Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis. Anna Rheum Dis. 1999;58(11):691.
CAS
Google Scholar
Lin N, Sato T, Ito A. Triptolide, a novel diterpenoid triepoxide from Tripterygium wilfordii Hook. f., suppresses the production and gene expression of pro–matrix metalloproteinases 1 and 3 and augments those of tissue inhibitors of metalloproteinases 1 and 2 in human synovial fibroblasts. Arthr Rheum. 2001;44(9):2193–200.
CAS
Google Scholar
Liacini A, Sylvester J, Zafarullah M. Triptolide suppresses proinflammatory cytokine-induced matrix metalloproteinase and aggrecanase-1 gene expression in chondrocytes. Biochem Biophys Res Commun. 2005;327(1):320–7.
CAS
PubMed
Google Scholar
Lin N, Liu C, Xiao C, Jia H, Imada K, Wu H, et al. Triptolide, a diterpenoid triepoxide, suppresses inflammation and cartilage destruction in collagen-induced arthritis mice. Biochem Pharmacol. 2007;73(1):136–46.
CAS
PubMed
Google Scholar
Wong PKK, Quinn JMW, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP. Interleukin-6 modulates production of T lymphocyte–derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthr Rheum. 2006;54(1):158–68.
CAS
Google Scholar
Jung SM, Kim KW, Yang C-W, Park S-H, Ju JH. Cytokine-mediated bone destruction in rheumatoid arthritis. J Immunol Res. 2014;2014:263625.
PubMed
PubMed Central
Google Scholar
Zhou J, Xiao C, Zhao L, Jia H, Zhao N, Lu C, et al. The effect of triptolide on CD4+ and CD8+ cells in Peyer’s patch of SD rats with collagen induced arthritis. Int Immunopharmacol. 2006;6(2):198–203.
CAS
PubMed
Google Scholar
Wang Y, Jia L, Wu Cy. Triptolide inhibits the differentiation of Th17 cells and suppresses collagen-induced arthritis. Scand J Immunol. 2008;68(4):383–90.
CAS
PubMed
Google Scholar
Wang J, Wang A, Zeng H, Liu L, Jiang W, Zhu Y, et al. Effect of triptolide on T-cell receptor beta variable gene mRNA expression in rats with collagen-induced arthritis. Anatom Rec. 2012;295(6):922–7.
CAS
Google Scholar
Mellado M, Martínez-Muñoz L, Cascio G, Lucas P, Pablos JL, Rodríguez-Frade JM. T cell migration in rheumatoid arthritis. Front Immunol. 2015;6:384.
PubMed
PubMed Central
Google Scholar
Xu H, Zhao H, Lu C, Qiu Q, Wang G, Huang J, et al. Triptolide inhibits osteoclast differentiation and bone resorption in vitro via enhancing the production of IL-10 and TGF-β1 by regulatory T cells. Mediat Inflamm. 2016;2016:8048170.
Google Scholar
Page G, Miossec P. RANK and RANKL expression as markers of dendritic cell–t cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthr Rheum. 2005;52(8):2307–12.
CAS
Google Scholar
Chen X, Murakami T, Oppenheim JJ, Howard OMZ. Triptolide, a constituent of immunosuppressive Chinese herbal medicine, is a potent suppressor of dendritic-cell maturation and trafficking. Blood. 2005;106(7):2409–16.
CAS
PubMed
PubMed Central
Google Scholar
Liu Q, Chen T, Chen G, Li N, Wang J, Ma P, et al. Immunosuppressant triptolide inhibits dendritic cell-mediated chemoattraction of neutrophils and T cells through inhibiting Stat3 phosphorylation and NF-κB activation. Biochem Biophys Res Commun. 2006;345(3):1122–30.
CAS
PubMed
Google Scholar
Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases. Blood. 2000;95(10):3032–43.
CAS
PubMed
Google Scholar
Wang Yifan WD, Zheng L, Yanping L, Junkan S. Triptolide inhibits CCR5 expressed in synovial tissue of rat adjuvant-induced arthritis. Pharmacol Rep. 2007;59(6):795–9.
PubMed
Google Scholar
Wang Y, Wei D, Lai Z, Le Y. Triptolide inhibits CC chemokines expressed in rat adjuvant-induced arthritis. Int Immunopharmacol. 2006;6(12):1825–32.
CAS
PubMed
Google Scholar
Sur Chowdhury C, Giaglis S, Walker UA, Buser A, Hahn S, Hasler P. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthr Res Ther. 2014;16(3):R122.
Google Scholar
Siebert S, Tsoukas A, Robertson J, McInnes I. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol Rev. 2015;67(2):280.
CAS
PubMed
Google Scholar
Huang G, Yuan K, Zhu Q, Zhang S, Lu Q, Zhu M, et al. Triptolide inhibits the inflammatory activities of neutrophils to ameliorate chronic arthritis. Mol Immunol. 2018;101:210–20.
CAS
PubMed
Google Scholar
Tecchio C, Cassatella MA. Neutrophil-derived chemokines on the road to immunity. Semin Immunol. 2016;28(2):119–28.
CAS
PubMed
PubMed Central
Google Scholar
Thairu N, Kiriakidis S, Dawson P, Paleolog E. Angiogenesis as a therapeutic target in arthritis in 2011: learning the lessons of the colorectal cancer experience. Angiogenesis. 2011;14(3):223–34.
CAS
PubMed
Google Scholar
Kong X, Zhang Y, Liu C, Guo W, Li X, Su X, et al. Anti-Angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade. PLoS ONE. 2013;8(10):e77513.
CAS
PubMed
PubMed Central
Google Scholar
Braun J, Sieper J. Ankylosing spondylitis. Lancet. 2007;369(9570):1379–90.
PubMed
Google Scholar
Schett G, Rudwaleit M. Can we stop progression of ankylosing spondylitis? Best Prac Res Clin Rheumatol. 2010;24(3):363–71.
Google Scholar
Ji W, Liu S, Zhao X, Guo Y, Xia S, Lu Y, et al. Triptolide inhibits proliferation, differentiation and induces apoptosis of osteoblastic MC3T3–E1 cells. Mol Med Rep. 2017;16(5):7391–7.
CAS
PubMed
PubMed Central
Google Scholar
Rosen V. BMP and BMP inhibitors in bone. Anna N Y Acad Sci. 2006;1068(1):19–25.
CAS
Google Scholar
Wang G, Cai J, Zhang J, Li C. Mechanism of triptolide in treating ankylosing spondylitis through the anti–ossification effect of the BMP/Smad signaling pathway. Mol Med Rep. 2018;17(2):2731–7.
CAS
PubMed
Google Scholar
Kanwal A, Fazal S. Construction and analysis of protein-protein interaction network correlated with ankylosing spondylitis. Gene. 2018;638:41–51.
CAS
PubMed
Google Scholar
Zhao L, Liu C-H, Yu D. High-throughput screening of chemical libraries for modulators of gene promoter activity of HLA-B2705: environmental pathogenesis and therapeutics of ankylosing spondylitis. J Rheumatol. 2011;38(6):1061.
CAS
PubMed
Google Scholar
Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110–21.
CAS
PubMed
Google Scholar
Perry D, Sang A, Yin Y, Zheng Y-Y, Morel L. Murine models of systemic lupus erythematosus. J Biomed Biotechnol. 2011;2011:271694.
PubMed
PubMed Central
Google Scholar
Huang X, Wen C, Wei H. Therapeutic effects of triptolide on lupus-prone MRL/lpr Mice. Int J Pharmacol. 2018;14(5):681–8.
CAS
Google Scholar
Pan W, Zhu S, Dai D, Liu Z, Li D, Li B, et al. MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis. Nat Commun. 2015;6(1):7096.
CAS
PubMed
Google Scholar
Zhao X, Tang X, Yan Q, Song H, Li Z, Wang D, et al. Triptolide ameliorates lupus via the induction of miR-125a-5p mediating Treg upregulation. Int Immunopharmacol. 2019;71:14–21.
CAS
PubMed
Google Scholar
Calautti E, Avalle L, Poli V. Psoriasis: a STAT3-ventric view. Int J Mol Sci. 2018;19(1):171.
PubMed Central
Google Scholar
Boehncke W-H, Schön MP, Psoriasis. Lancet. 2015;386(9997):983–94.
CAS
PubMed
Google Scholar
Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol. 2017;140(3):645–53.
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Ma X. Triptolide inhibits IL-12/IL-23 expression in APCs via CCAAT/enhancer-binding protein α. J Immunol. 2010;184(7):3866.
CAS
PubMed
Google Scholar
Hongqin T, Xinyu L, Heng G, Lanfang X, Yongfang W, Shasha S. Triptolide inhibits IFN-γ signaling via the Jak/STAT pathway in HaCaT keratinocytes. Phytother Res. 2011;25(11):1678–85.
PubMed
Google Scholar
He Q, Zhang B, Hu F, Long J, Shi Q, Pi X, et al. Triptolide inhibits the proliferation of HaCaT cells induced by IL22 via upregulating miR-181b-5p. Drug Des Devel Ther. 2020;14:2927–35.
CAS
PubMed
PubMed Central
Google Scholar
Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56(1):61.
CAS
PubMed
Google Scholar
Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, et al. TNF-α-induced increase in intestinal epithelial tight junction permeability requires NF-κB activation. Am J Physiol Gastrointest Liver Physiol. 2004;286(3):G367–76.
Google Scholar
Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–74.
PubMed
Google Scholar
Wei X, Gong J, Zhu J, Niu L, Zhu W, Li N, et al. Therapeutic effects of triptolide on interleukin-10 gene-deficient mice with colitis. Int Immunopharmacol. 2008;8(13):1808–12.
CAS
PubMed
Google Scholar
Yu C, Shan T, Feng A, Li Y, Zhu W, Xie Y, et al. Triptolide ameliorates Crohn’s colitis is associated with inhibition of TLRs/NF-κB signaling pathway. Fitoterapia. 2011;82(4):709–15.
CAS
PubMed
Google Scholar
Li Y, Yu C, Zhu W-m, Xie Y, Qi X, Li N, et al. Triptolide ameliorates IL-10-deficient mice colitis by mechanisms involving suppression of IL-6/STAT3 signaling pathway and down-regulation of IL-17. Mol Immunol. 2010;47(15):2467–74.
CAS
PubMed
Google Scholar
Li Y, Tian Y, Zhu W, Gong J, Zhang W, Yu C, et al. Triptolide induces suppressor of cytokine signaling-3 expression and promotes lamina propria mononuclear cells apoptosis in Crohn’s colitis. Int Immunopharmacol. 2013;16(2):268–74.
CAS
PubMed
Google Scholar
Kim D, Yoo S-A, Kim W-U. Gut microbiota in autoimmunity: potential for clinical applications. Arch Pharmacol Res. 2016;39(11):1565–76.
CAS
Google Scholar
Macfarlane S, Furrie E, Cummings JH, Macfarlane GT. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin Infect Dis. 2004;38(12):1690–9.
PubMed
Google Scholar
Wu H, Rao Q, Ma G-C, Yu X-H, Zhang C-E, Ma Z-J. Effect of triptolide on dextran sodium sulfate-induced ulcerative colitis and gut microbiota in mice. Front Pharmacol. 2020;10:1652.
PubMed
PubMed Central
Google Scholar
Zhang H, Zhang X, Ding X, Cao W, Qu L, Zhou G. Effect of secondary lymphoid tissue chemokine suppression on experimental ulcerative colitis in mice. Genet Mol Res. 2014;13(2):3337–45.
CAS
PubMed
Google Scholar
Zhang H, Gong C, Qu L, Ding X, Cao W, Chen H, et al. Therapeutic effects of triptolide via the inhibition of IL-1β expression in a mouse model of ulcerative colitis. Exp Ther Med. 2016;12(3):1279–86.
PubMed
PubMed Central
Google Scholar
Trapp BD, Nave K-A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31(1):247–69.
CAS
PubMed
Google Scholar
Kizelsztein P, Komarnytsky S, Raskin I. Oral administration of triptolide ameliorates the clinical signs of experimental autoimmune encephalomyelitis (EAE) by induction of HSP70 and stabilization of NF-κB/IκBα transcriptional complex. J Neuroimmunol. 2009;217(1):28–37.
CAS
PubMed
Google Scholar
Wang Y, Mei Y, Feng D, Xu L. Triptolide modulates T-cell inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurosci Res. 2008;86(11):2441–9.
CAS
PubMed
Google Scholar
Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev. 2014;47:485–505.
CAS
PubMed
Google Scholar
Sanadgol N, Golab F, Mostafaie A, Mehdizadeh M, Khalseh R, Mahmoudi M, et al. Low, but not high, dose triptolide controls neuroinflammation and improves behavioral deficits in toxic model of multiple sclerosis by dampening of NF-κB activation and acceleration of intrinsic myelin repair. Toxicol Appl Pharmacol. 2018;342:86–98.
CAS
PubMed
Google Scholar
Xu L, Qiu Y, Xu H, Ao W, Lam W, Yang X. Acute and subacute toxicity studies on triptolide and triptolide-loaded polymeric micelles following intravenous administration in rodents. Food Chem Toxicol. 2013;57:371–9.
CAS
PubMed
Google Scholar
Wang J, Jiang Z, Ji J, Wang X, Wang T, Zhang Y, et al. Gene expression profiling and pathway analysis of hepatotoxicity induced by triptolide in Wistar rats. Food Chem Toxicol. 2013;58:495–505.
CAS
PubMed
Google Scholar
Li J, Shen F, Guan C, Wang W, Sun X, Fu X, et al. Activation of Nrf2 protects against triptolide-induced hepatotoxicity. PLoS ONE. 2014;9(7):e100685.
PubMed
PubMed Central
Google Scholar
Fu Q, Huang X, Shu B, Xue M, Zhang P, Wang T, et al. Inhibition of mitochondrial respiratory chain is involved in triptolide-induced liver injury. Fitoterapia. 2011;82(8):1241–8.
CAS
PubMed
Google Scholar
Yuan Z, Hasnat M, Liang P, Yuan Z, Zhang H, Sun L, et al. The role of inflammasome activation in Triptolide-induced acute liver toxicity. Int Immunopharmacol. 2019;75:105754.
CAS
PubMed
Google Scholar
Wang X, Jiang Z, Cao W, Yuan Z, Sun L, Zhang L. Th17/Treg imbalance in triptolide-induced liver injury. Fitoterapia. 2014;93:245–51.
CAS
PubMed
Google Scholar
Yang J, Sun L, Wang L, Hassan HM, Wang X, Hylemon PB, et al. Activation of Sirt1/FXR Signaling Pathway Attenuates Triptolide-Induced Hepatotoxicity in Rats. Frontiers in Pharmacology. 2017;8(260).
Lu Y, Xie T, Zhang Y, Zhou F, Ruan J, Zhu W, et al. Triptolide induces hepatotoxicity via inhibition of CYP450s in Rat liver microsomes. BMC Complement Altern Med. 2017;17(1):15.
PubMed
PubMed Central
Google Scholar
Liu L, Jiang Z, Liu J, Huang X, Wang T, Liu J, et al. Sex differences in subacute toxicity and hepatic microsomal metabolism of triptolide in rats. Toxicology. 2010;271(1):57–63.
CAS
PubMed
Google Scholar
Li S, Yu Y, Bian X, Yao L, Li M, Lou Y-R, et al. Prediction of oral hepatotoxic dose of natural products derived from traditional Chinese medicines based on SVM classifier and PBPK modeling. Arch Toxicol. 2021;95(5):1683–701.
CAS
PubMed
Google Scholar
Sun L, Li H, Huang X, Wang T, Zhang S, Yang J, et al. Triptolide alters barrier function in renal proximal tubular cells in rats. Toxicol Lett. 2013;223(1):96–102.
CAS
PubMed
Google Scholar
Yang F, Zhuo L, Ananda S, Sun T, Li S, Liu L. Role of reactive oxygen species in triptolide-induced apoptosis of renal tubular cells and renal injury in rats. J Huazhong Univ Sci Technol. 2011;31(3):335–41.
CAS
Google Scholar
Yang F, Ren L, Zhuo L, Ananda S, Liu L. Involvement of oxidative stress in the mechanism of triptolide-induced acute nephrotoxicity in rats. Exp Toxicol Pathol. 2012;64(7):905–11.
CAS
PubMed
Google Scholar
Shen Q, Wang J, Yuan Z, Jiang Z, Shu T, Xu D, et al. Key role of organic cation transporter 2 for the nephrotoxicity effect of triptolide in rheumatoid arthritis. Int Immunopharmacol. 2019;77:105959.
CAS
PubMed
Google Scholar
Ni B, Jiang Z, Huang X, Xu F, Zhang R, Zhang Z, et al. Male reproductive toxicity and toxicokinetics of triptolide in rats. Arzneimittelforschung. 2008;58(12):673–80.
CAS
PubMed
Google Scholar
Ma B, Qi H, Li J, Xu H, Chi B, Zhu J, et al. Triptolide disrupts fatty acids and peroxisome proliferator-activated receptor (PPAR) levels in male mice testes followed by testicular injury: A GC–MS based metabolomics study. Toxicology. 2015;336:84–95.
CAS
PubMed
Google Scholar
Li C, Xing G, Maeda K, Wu C, Gong L, Sugiyama Y, et al. The role of breast cancer resistance protein (Bcrp/Abcg2) in triptolide-induced testis toxicity. Toxicol Res. 2015;4(5):1260–8.
CAS
Google Scholar
Liu J, Jiang Z, Liu L, Zhang Y, Zhang S, Xiao J, et al. Triptolide induces adverse effect on reproductive parameters of female Sprague-Dawley rats. Drug Chem Toxicol. 2011;34(1):1–7.
PubMed
Google Scholar
Zhang J, Liu L, Mu X, Jiang Z, Zhang L. Effect of triptolide on estradiol release from cultured rat granulosa cells. Endocr J. 2012;59(6):473–81.
CAS
PubMed
Google Scholar
Zhang J, Jiang Z, Mu X, Wen J, Su Y, Zhang L. Effect of triptolide on progesterone production from cultured rat granulosa cells. Arzneimittelforschung. 2012;62(6):301–6.
CAS
PubMed
Google Scholar
Zeng Y, Sun H, Li Y, Shao M, Han P, Yu X, et al. Exposure to triptolide affects follicle development in NIH mice: role of endoplasmic reticulum stress in granulosa cell apoptosis. Hum Exp Toxicol. 2016;36(1):82–92.
PubMed
Google Scholar
Wang S-R, Chen X, Ling S, Ni R-z, Guo H, Xu J-W. MicroRNA expression, targeting, release dynamics and early-warning biomarkers in acute cardiotoxicity induced by triptolide in rats. Biomed Pharmacother. 2019;111:1467–77.
CAS
PubMed
Google Scholar
Zhou J, Xi C, Wang W, Fu X, Jinqiang L, Qiu Y, et al. Triptolide-induced oxidative stress involved with Nrf2 contribute to cardiomyocyte apoptosis through mitochondrial dependent pathways. Toxicol Lett. 2014;230(3):454–66.
CAS
PubMed
Google Scholar
Zhou J, Xi C, Wang W, Yang Y, Qiu Y, Huang Z. Autophagy plays an important role in triptolide-induced apoptosis in cardiomyocytes. Toxicol Lett. 2015;236(3):168–83.
CAS
PubMed
Google Scholar
Shao F, Wang G, Xie H, Zhu X, Sun J. Pharmacokinetic study of triptolide, a constituent of immunosuppressive Chinese herb medicine, in Rats. Biol Pharm Bull. 2007;30(4):702–7.
CAS
PubMed
Google Scholar
Zhang C, Gu C, Peng F, Liu W, Wan J, Xu H, et al. Preparation and Optimization of Triptolide-Loaded Solid Lipid Nanoparticles for Oral Delivery with Reduced Gastric Irritation. Molecules. 2013;18(11).
Chen H, Chang X, Weng T, Zhao X, Gao Z, Yang Y, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Control Release. 2004;98(3):427–36.
CAS
PubMed
Google Scholar
Lipsky PE, Tao X-L. A potential new treatment for rheumatoid arthritis:Thunder god vine. Seminars in Arthritis and Rheumatism. 1997;26(5):713–23.
CAS
PubMed
Google Scholar
Hou W, Liu B, Xu H, Triptolide. Medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem. 2019;176:378–92.
CAS
PubMed
Google Scholar
Pan F, Fisniku O, Wynn C, Erickson LM, Crews G, Jang MS, et al. PG490-88, a new immunosuppressant, effectively prevents acute and chronic rejection in rat renal allografts. Transpl Proc. 2005;37(1):134–6.
CAS
Google Scholar
Fidler JM, Li K, Chung C, Wei K, Ross JA, Gao M, et al. PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy. Mol Cancer Ther. 2003;2(9):855.
CAS
PubMed
Google Scholar
Kitzen JJEM, de Jonge MJA, Lamers CHJ, Eskens FALM, van der Biessen D, van Doorn L, et al. Phase I dose-escalation study of F60008, a novel apoptosis inducer, in patients with advanced solid tumours. Eur J Cancer. 2009;45(10):1764–72.
CAS
PubMed
Google Scholar
Banerjee S, Saluja A. Minnelide, a novel drug for pancreatic and liver cancer. Pancreatology. 2015;15(4 Suppl):S39-S43.
Google Scholar
Fu Y-F, Zhu Y-N, Ni J, Zhong X-G, Tang W, Zhou R, et al. (5R)-5-Hydroxytriptolide (LLDT-8), a novel triptolide derivative, prevents experimental autoimmune encephalomyelitis via inhibiting T cell activation. J Neuroimmunol. 2006;175(1):142–51.
CAS
PubMed
Google Scholar
Zhang L-y, Li H, Wu Y-w, Cheng L, Yan Y-x, Yang X-q, et al. 5R)-5-hydroxytriptolide ameliorates lupus nephritis in MRL/lpr mice by preventing infiltration of immune cells. Am J Physiol Renal Physiol. 2017;312(4):F769–77.
Google Scholar
Zhou R, Tang W, Ren Y-X, He P-L, Zhang F, Shi L-P, et al. (5R)-5-hydroxytriptolide attenuated collagen-induced arthritis in DBA/1 Mice via Suppressing Interferon-γ production and its related signaling. J Pharmacol Exp Ther. 2006;318(1):35.
CAS
PubMed
Google Scholar
Zhou R, Zhang F, He P-L, Zhou W-L, Wu Q-L, Xu J-Y, et al. 5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide analog mediates immunosuppressive effects in vitro and in vivo. Int Immunopharmacol. 2005;5(13):1895–903.
CAS
PubMed
Google Scholar
Fidler JM, An J, Carter BZ, Andreeff M. Preclinical antileukemic activity, toxicology, toxicokinetics and formulation development of triptolide derivative MRx102. Cancer Chemother Pharmacol. 2014;73(5):961–74.
CAS
PubMed
PubMed Central
Google Scholar
Datan E, Minn I, Xu P, He Q-L, Ahn H-H, Yu B, et al. A Glucose-Triptolide Conjugate Selectively Targets Cancer Cells under Hypoxia. iScience. 2020;23(9):101536.
CAS
PubMed
PubMed Central
Google Scholar
He Q-L, Minn I, Wang Q, Xu P, Head SA, Datan E, et al. Targeted delivery and sustained antitumor activity of triptolide through glucose conjugation. Angewandte Chemie Int Edition. 2016;55(39):12035–9.
CAS
Google Scholar
Qi B, Wang X, Zhou Y, Han Q, He L, Gong T, et al. A renal-targeted triptolide aminoglycoside (TPAG) conjugate for lowering systemic toxicities of triptolide. Fitoterapia. 2015;103:242–51.
CAS
PubMed
Google Scholar
Zhou P, Sun X, Gong T, Zhang Z, Zhang L. Conjugating glucosamine to triptolide to enhance its protective effect against renal ischemia-reperfusion injury and reduce its toxicity. J Drug Target. 2014;22(3):200–10.
CAS
PubMed
Google Scholar
Fu Y, Lin Q, Gong T, Sun X, Zhang Z-R. Renal-targeting triptolide-glucosamine conjugate exhibits lower toxicity and superior efficacy in attenuation of ischemia/reperfusion renal injury in rats. Acta Pharmacol Sin. 2016;37(11):1467–80.
CAS
PubMed
PubMed Central
Google Scholar
Harousseau JL, Dombret H, Pigneux A, Michallet M, Brandely M. Phase I study of F60008, a triptolide derivative, in patients with refractory or relapsing acute leukemias. Haematologica. 2008;93:14–5.
Google Scholar
Hydroxytriptolide in active rheumatoid arthritis patients with an inadequate response to methotrexate. https://clinicaltrials.gov/ct2/show/NCT02202395.
A Phase II, International Open Label Trial of Minnelide™ in patients with refractory pancreatic cancer. https://clinicaltrials.gov/ct2/show/NCT03117920.
A Phase 1, Multi-Center, Open-Label, Dose-Escalation, Safety, Pharmacokinetic, and Pharmacodynamic Study of Minnelide™ Capsules Given Alone or in Combination With Protein-Bound Paclitaxel in Patients With Advanced Solid Tumors. https://www.clinicaltrials.gov/ct2/show/NCT03129139.
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121.
CAS
PubMed
Google Scholar
Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci. 2006;123–126:369–85.
CAS
PubMed
Google Scholar
Xu L, Pan J, Chen Q, Yu Q, Chen H, Xu H, et al. In vivo evaluation of the safety of triptolide-loaded hydrogel-thickened microemulsion. Food Chem Toxicol. 2008;46(12):3792–9.
CAS
PubMed
Google Scholar
Chen L, Zhao X, Cai J, Guan Y, Wang S, Liu H, et al. Triptolide-loaded microemulsion-based hydrogels: physical properties and percutaneous permeability. Acta Pharmaceutica Sinica B. 2013;3(3):185–92.
Google Scholar
Puri A, Loomis K, Smith B, Lee J-H, Yavlovich A, Heldman E, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523–80.
CAS
PubMed
PubMed Central
Google Scholar
Chen G, Hao B, Ju D, Liu M, Zhao H, Du Z, et al. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharmaceutica Sinica B. 2015;5(6):569–76.
PubMed
PubMed Central
Google Scholar
Aji Alex MR, Chacko AJ, Jose S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42(1):11–8.
CAS
PubMed
Google Scholar
Luo Y, Chen D, Ren L, Zhao X, Qin J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release. 2006;114(1):53–9.
CAS
PubMed
Google Scholar
Xue M, Zhao Y, Li X-j, Jiang Z-z, Zhang L, Liu S-h, et al. Comparison of toxicokinetic and tissue distribution of triptolide-loaded solid lipid nanoparticles vs free triptolide in rats. Eur J Pharm Sci. 2012;47(4):713–7.
CAS
PubMed
Google Scholar
Mei Z, Li X, Wu Q, Hu S, Yang X. The research on the anti-inflammatory activity and hepatotoxicity of triptolide-loaded solid lipid nanoparticle. Pharmacol Res. 2005;51(4):345–51.
CAS
PubMed
Google Scholar
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–72.
CAS
PubMed
Google Scholar
Gu Y, Tang X, Yang M, Yang D, Liu J. Transdermal drug delivery of triptolide-loaded nanostructured lipid carriers: preparation, pharmacokinetic, and evaluation for rheumatoid arthritis. Int J Pharm. 2019;554:235–44.
CAS
PubMed
Google Scholar
Zabara A, Mezzenga R. Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases. J Control Release. 2014;188:31–43.
CAS
PubMed
Google Scholar
Chen Y, Ma P, Gui S. Cubic and hexagonal liquid crystals as drug delivery systems. Biomed Res Int. 2014;2014:815981-.
PubMed
PubMed Central
Google Scholar
Shan Q-Q, Jiang X-J, Wang F-Y, Shu Z-X, Gui S-Y. Cubic and hexagonal liquid crystals as drug carriers for the transdermal delivery of triptolide. Drug Deliv. 2019;26(1):490–8.
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Wang T, Li Q, Huang J, Xu H, Li J, et al. Fabrication of novel vesicles of triptolide for antirheumatoid activity with reduced toxicity in vitro and in vivo. Int J Nanomed. 2016;11:2663–73.
CAS
Google Scholar
Zhang L, Yan M, Chen K, Tian Q, Song J, Zhang Z, et al. Novel carboxylated chitosan-based triptolide conjugate for the treatment of rheumatoid arthritis. Pharmaceutics. 2020;12(3):202.
CAS
PubMed Central
Google Scholar
Zhang L, Chang J, Zhao Y, Xu H, Wang T, Li Q, et al. Fabrication of a triptolide-loaded and poly-gamma-glutamic acid-based amphiphilic nanoparticle for the treatment of rheumatoid arthritis. Int J Nanomed. 2018;13:2051–64.
CAS
Google Scholar
Li P, Yang X, Yang Y, He H, Chou C-K, Chen F, et al. Synergistic effect of all-trans-retinal and triptolide encapsulated in an inflammation-targeted nanoparticle on collagen-induced arthritis in mice. J Control Release. 2020;319:87–103.
CAS
PubMed
Google Scholar
Zhang W, Lu C, Liu Z, Yang D, Chen S, Cha A, et al. Therapeutic effect of combined triptolide and glycyrrhizin treatment on rats with collagen induced arthritis. Planta Med. 2007;73(4):336–40.
CAS
PubMed
Google Scholar
Wang L, Huang Q-H, Li Y-X, Huang Y-F, Xie J-H, Xu L-Q, et al. Protective effects of silymarin on triptolide-induced acute hepatotoxicity in rats. Mol Med Rep. 2018;17(1):789–800.
CAS
PubMed
Google Scholar
Zhang B, Zhang Q, Liu M, Zhang X, Shi D, Guo L, et al. Increased involvement of Panax notoginseng in the mechanism of decreased hepatotoxicity induced by Tripterygium wilfordii in rats. J Ethnopharmacol. 2016;185:243–54.
CAS
PubMed
Google Scholar
Tai T, Huang X, Su Y, Ji J, Su Y, Jiang Z, et al. Glycyrrhizin accelerates the metabolism of triptolide through induction of CYP3A in rats. J Ethnopharmacol. 2014;152(2):358–63.
CAS
PubMed
Google Scholar
Zhang X, Xiao Z, Xu H. A review of the total syntheses of triptolide. Beilstein J Org Chem. 2019;15:1984–95.
CAS
PubMed
PubMed Central
Google Scholar
Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H. Triptolide and its derivatives as cancer therapies. Trends Pharm Sci. 2019;40(5):327–41.
CAS
PubMed
Google Scholar
Lv H, Jiang L, Zhu M, Li Y, Luo M, Jiang P, et al. The genus Tripterygium: a phytochemistry and pharmacological review. Fitoterapia. 2019;137:104190.
CAS
PubMed
Google Scholar
Tong L, Zhao Q, Datan E, Lin G-Q, Minn I, Pomper MG, et al. Triptolide: reflections on two decades of research and prospects for the future. Nat Prod Rep. 2021;38(4):843–60.
CAS
PubMed
Google Scholar