Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol. 2016;68(25):2871–86.
Article
PubMed
PubMed Central
Google Scholar
Imai M, Rastogi S, Gupta RC, Mishra S, Sharov VG, Stanley WC, Mika Y, et al. Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol. 2007;49(21):2120–8.
Article
PubMed
Google Scholar
Brieler J, Breeden MA, Tucker J. Cardiomyopathy: an overview. Am Fam Physician. 2017;96(10):640–6.
PubMed
Google Scholar
Yu J, Zeng C, Wang Y. Epigenetics in dilated cardiomyopathy. Curr Opin Cardiol. 2019;34(3):260–9.
Article
PubMed
PubMed Central
Google Scholar
Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res. 2011;91(2):279–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Genge CE, Lin E, Lee L, Sheng X, Rayani K, Gunawan M, Stevens CM, et al. The zebrafish heart as a model of mammalian cardiac function. Rev Physiol Biochem Pharmacol. 2016;171:99–136.
Article
CAS
PubMed
Google Scholar
Kesavan G, Chekuru A, Machate A, Brand M. CRISPR/Cas9-mediated zebrafish knock-in as a novel strategy to study midbrain-hindbrain boundary development. Front Neuroanat. 2017;11:52.
Article
PubMed
Google Scholar
Asnani A, Peterson RT. The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech. 2014;7(7):763–7.
Article
PubMed
PubMed Central
Google Scholar
Gu G, Na Y, Chung H, Seok SH, Lee HY. Zebrafish larvae model of dilated cardiomyopathy induced by terfenadine. Korean Circ J. 2017;47(6):960–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu S, Hu M, Wang Z, Liu H, Kou Y, Lyu Z, Tian J. Generation and application of the zebrafish heg1 mutant as a cardiovascular disease model. Biomolecules. 2020;10(11):1542.
Article
CAS
PubMed Central
Google Scholar
Zhu L, Chen Z, Han K, Zhao Y, Li Y, Li D, Wang X, et al. Correlation between mitochondrial dysfunction, cardiovascular diseases, and traditional chinese medicine. Evid Based Complement Alternat Med. 2020;2020:2902136.
Article
PubMed
PubMed Central
Google Scholar
Wan J, Wan H, Yang R, Wan H, Yang J, He Y, Zhou H. Protective effect of Danhong Injection combined with Naoxintong Capsule on cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol. 2018;211:348–57.
Article
PubMed
Google Scholar
Li J, Bai Y, Bai Y, Zhu R, Liu W, Cao J, An M, Tan Z, Chang YX. Pharmacokinetics of caffeic acid, ferulic acid, formononetin, cryptotanshinone, and tanshinone IIA after oral administration of Naoxintong capsule in rat by HPLC-MS/MS. Evid Based Complement Alternat Med. 2017;2017:9057238.
Article
PubMed
PubMed Central
Google Scholar
Han J, Tan H, Duan Y, Chen Y, Zhu Y, Zhao B, Wang Y, Yang X. The cardioprotective properties and the involved mechanisms of Naoxintong capsule. Pharmacol Res. 2019;141:409–17.
Article
PubMed
Google Scholar
Wang Z, Liu P, Hu M, Lu S, Lyu Z, Kou Y, Sun Y, et al. Naoxintong restores ischemia injury and inhibits thrombosis via COX2-VEGF/NFκB signaling. J Ethnopharmacol. 2021;270:113809.
Article
CAS
PubMed
Google Scholar
Lv P, Tong X, Peng Q, Liu Y, Jin H, Liu R, Sun W, et al. Treatment with the herbal medicine, Naoxintong improves the protective effect of high-density lipoproteins on endothelial function in patients with type 2 diabetes. Mol Med Rep. 2016;13(3):2007–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Zhong WJ, Huang MW, Wu XY, Chen H. Efficacy of dual antiplatelet therapy combined with Naoxintong capsules (see text) following coronary microembolization induced by homologous microthrombi in rats. Chin J Integr Med. 2011;17(12):917–24.
Article
CAS
PubMed
Google Scholar
Wang Y, Yan X, Mi S, Li Z, Wang Y, Zhu H, Sun X, et al. Naoxintong attenuates Ischaemia/reperfusion Injury through inhibiting NLRP3 inflammasome activation. J Cell Mol Med. 2017;21(1):4–12.
Article
CAS
PubMed
Google Scholar
Xu H, Jin J, Chen L, Li C, Xu Q, Shi J, Zhao B, et al. Naoxintong/PPARα signaling inhibits H9c2 cell apoptosis and autophagy in response to oxidative stress. Evid Based Complement Alternat Med. 2016;2016:4370381.
Article
PubMed
PubMed Central
Google Scholar
Zhang WJ, Su WW, Li PB, Rao HY, Lin QW, Zeng X, Chen TB, et al. Naoxintong capsule inhibits the development of cardiovascular pathological changes in bama minipig through improving gut microbiota. Front Pharmacol. 2019;10:1128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian J, Shao J, Liu C, Hou HY, Chou CW, Shboul M, Li GQ, et al. Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged-Notch signaling in fin and limb development. Cell Mol Life Sci. 2019;76(1):163–78.
Article
CAS
PubMed
Google Scholar
Huang CJ, Tu CT, Hsiao CD, Hsieh FJ, Tsai HJ. Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn. 2003;228(1):30–40.
Article
CAS
PubMed
Google Scholar
Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development. 2005;132(23):5199–209.
Article
CAS
PubMed
Google Scholar
Lombardo VA, Otten C, Abdelilah-Seyfried S. Large-scale zebrafish embryonic heart dissection for transcriptional analysis. J Vis Exp. 2015;95:52087.
Google Scholar
Xiao D, Wang H, Hao L, Guo X, Ma X, Qian Y, Chen H, Ma J, et al. The roles of SMYD4 in epigenetic regulation of cardiac development in zebrafish. PLoS Genet. 2018;14(8):e1007578.
Article
PubMed
PubMed Central
Google Scholar
Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–47.
Article
CAS
PubMed
Google Scholar
McNally EM, Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res. 2017;121(7):731–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shih YH, Zhang Y, Ding Y, Ross CA, Li H, Olson TM, Xu X. Cardiac transcriptome and dilated cardiomyopathy genes in zebrafish. Circ Cardiovasc Genet. 2015;8(2):261–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilsbacher LD. Clinical implications of the genetic architecture of dilated cardiomyopathy. Curr Cardiol Rep. 2020;22(12):170.
Article
PubMed
PubMed Central
Google Scholar
Mably JD, Mohideen MA, Burns CG, Chen JN, Fishman MC. heart of glass regulates the concentric growth of the heart in zebrafish. Curr Biol. 2003;13(24):2138–47.
Article
CAS
PubMed
Google Scholar
Kleaveland B, Zheng X, Liu JJ, Blum Y, Tung JJ, Zou Z, Sweeney SM, et al. Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med. 2009;15(2):169–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu H, Zhu Q, Su J, Wu Y, Zhu Y, Wang Y, Fang H, et al. Effects of an enriched extract of paeoniflorin, a monoterpene glycoside used in chinese herbal medicine, on cholesterol metabolism in a hyperlipidemic rat model. Med Sci Monit. 2017;23:3412–27.
Article
PubMed
PubMed Central
Google Scholar
Li CL, Liu B, Wang ZY, Xie F, Qiao W, Cheng J, Kuang JY, et al. Salvianolic acid B improves myocardial function in diabetic cardiomyopathy by suppressing IGFBP3. J Mol Cell Cardiol. 2020;139:98–112.
Article
CAS
PubMed
Google Scholar
Liang Q, Cai Y, Chen R, Chen W, Chen L, Xiao Y. The effect of Naoxintong capsule in the treatment of patients with cerebral infarction and carotid atherosclerosis: a systematic review and meta-analysis of randomized trials. Evid Based Complement Alternat Med. 2018;2018:5892306.
Article
PubMed
PubMed Central
Google Scholar
Zheng X, Riant F, Bergametti F, Myers CD, Tang AT, Kleaveland B, Pan W, et al. Cerebral cavernous malformations arise independent of the heart of glass receptor. Stroke. 2014;45(5):1505–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mably JD, Chuang LP, Serluca FC, Mohideen MA, Chen JN, Fishman MC. Santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development. 2006;133(16):3139–46.
Article
CAS
PubMed
Google Scholar
Rosen JN, Sogah VM, Ye LY, Mably JD. ccm2-like is required for cardiovascular development as a novel component of the Heg-CCM pathway. Dev Biol. 2013;376(1):74–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bollen IAE, Schuldt M, Harakalova M, Vink A, Asselbergs FW, Pinto JR, Krüger M, Kuster DWD, van der Velden J. Genotype-specific pathogenic effects in human dilated cardiomyopathy. J Physiol. 2017;595(14):4677–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berdougo E, Coleman H, Lee DH, Stainier DY, Yelon D. Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development. 2003;130(24):6121–9.
Article
CAS
PubMed
Google Scholar
Siddique BS, Kinoshita S, Wongkarangkana C, Asakawa S, Watabe S. Evolution and distribution of teleost myomiRNAs: functionally diversified myomiRs in teleosts. Mar Biotechnol. 2016;18(3):436–47.
Article
CAS
Google Scholar
Westfall MV, Albayya FP, Metzger JM. Functional analysis of troponin I regulatory domains in the intact myofilament of adult single cardiac myocytes. J Biol Chem. 1999;274(32):22508–16.
Article
CAS
PubMed
Google Scholar