Fehily AM. SOY (SOYA) BEANS | dietary importance. In: Encyclopedia of food sciences & nutrition. Cambridge: Academic Press; 2003. p. 5392–8.
Chapter
Google Scholar
Liu Z. Essentials of Chinese medicine. London: Springer; 2009.
Book
Google Scholar
Zhang L, Siu A, Lin G, Zhong Z. Intestinal absorbability of three Radix Puerariae isoflavones including daidzein, daidzin and puerarin. Chin Med. 2011;6(1):41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raimondi S, Roncaglia L, Lucia M, Amaretti A, Leonardi A, Pagnoni UM, et al. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl Microbiol Biotechnol. 2009;81(5):943–50.
Article
CAS
PubMed
Google Scholar
Van Duursen MB. Modulation of estrogen synthesis and metabolism by phytoestrogens in vitro and the implications for women’s health. Toxicol Res. 2017;6(6):772–92.
Article
CAS
Google Scholar
Senin P, Setnikar I, Rovati AL. Phytoestrogens and probiotic for women’s health. US patent. 2006.
Zhang W. Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production. Biochem Pharmacol. 2003;65(5):709–15.
Article
PubMed
CAS
Google Scholar
Jin X, Sun J, Yu B, Wang Y, Sun WJ, Yang J, et al. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor-dependent MEK/ERK and PI3K/Akt activation. Nutr Res. 2017;42:20.
Article
CAS
PubMed
Google Scholar
Wei G, Liang T, Wei C, et al. Daidzin inhibits RANKL-induced osteoclastogenesis in vitro and prevents LPS-induced bone loss in vivo. J Cell Biochem. 2018;120(4):5304–14.
Article
PubMed
CAS
Google Scholar
Choi H, Tostes RC, Webb RC. Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular contraction in angiotensin-II hypertensive mice. J Am Soc Hypertens. 2011;5(3):154–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jamwal S, Sharma S. Daidzein-A caveolin inhibitor exerts antihypertensive effect and improves endothelium-dependent vasorelaxation in a rat model of DOCA-salt-induced hypertension. J Cardiol Cardiovasc Ther. 2019;15(1):16–23.
Google Scholar
Liu ZM, Ho SC, Chen YM, Ho S, To K, Tomlinson B, et al. Whole soy, but not purified daidzein, had a favorable effect on improvement of cardiovascular risks: a 6-month randomized, double‐blind, and placebo‐controlled trial in equol‐producing postmenopausal women. Mol Nutr Food Res. 2014;58(4):709–17.
Article
CAS
PubMed
Google Scholar
Christina GK, Bogdanos DP, Sakkas L. Inflammation and cardiovascular disease. World J Transl Med. 2019;8(1):1–8.
Article
Google Scholar
Marianne B-S, Meier DT. Islet inflammation in type 2 diabetes. In: Seminars in immunopathology. Berlin: Springer; 2019.
Google Scholar
Donath MY. Targeting inflammation in the treatment of type 2 diabetes. Diabetes Obes Metab. 2013;15(s3):193–6.
Article
CAS
PubMed
Google Scholar
Vaidya FU, Chhipa AS, Sagar N, Pathak C. Oxidative stress and inflammation can fuel cancer. In: Role of oxidative stress in pathophysiology of diseases. Singapore: Springer; 2020.
Google Scholar
Igor P, Katarzyna K, Wiktoria S. Interplay between inflammation and cancer. Rep Pract Oncol Radiother. 2020;25(3):422–7.
Article
Google Scholar
Spel L, Martinon F. Inflammasomes contributing to inflammation in arthritis. Immunol Rev. 2020;294(2):48–62.
Article
CAS
PubMed
Google Scholar
Yu Z, Yang L, Deng S, Liang M. Daidzein ameliorates LPS-induced hepatocyte injury by inhibiting inflammation and oxidative stress. Eur J Pharmacol. 2020;885:173399.
Article
CAS
PubMed
Google Scholar
Hai-Yan LI, Pan L, Yue-Shuang KE, Batnasan E, Jin XQ, Liu ZY, et al. Daidzein suppresses pro-inflammatory chemokine Cxcl2 transcription in TNF-α-stimulated murine lung epithelial cells via depressing PARP-1 activity. Acta Pharmacol Sin. 2014;35(004):496–503.
Article
CAS
Google Scholar
Peng Y, Shi Y, Zhang H, Mine Y, Tsao R. Anti-inflammatory and anti-oxidative activities of daidzein and its sulfonic acid ester derivatives. J Funct Foods. 2017;35:635–40.
Article
CAS
Google Scholar
Choi EY, Jin JY, Lee JY, Choi JI, Kim SJ. Anti-inflammatory effects and the underlying mechanisms of action of daidzein in murine macrophages stimulated with Prevotella intermedia lipopolysaccharide. J Periodontal Res. 2012;47(2):204–11.
Article
CAS
PubMed
Google Scholar
Hämäläinen M, Nieminen R, Vuorela P, et al. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm. 2007. https://doi.org/10.1155/2007/45673.
Article
Google Scholar
Jin SE, Son YK, Min BS, Jung HA, Choi JS. Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Arch Pharm Res. 2012;35(5):823–37.
Article
CAS
PubMed
Google Scholar
Zhou C, Zhang X, Ruan CC, Cheang WS. Two methoxy derivatives of resveratrol, 3,3′,4,5′-tetramethoxy-trans-stilbene and 3,4′,5-trimethoxy-trans-stilbene, suppress lipopolysaccharide-induced inflammation through inactivation of MAPK and NF-kappaB pathways in RAW 264.7 cells. Chin Med. 2021;16(1):69. https://doi.org/10.1186/s13020-021-00480-9 (Epub 2021/08/06).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong Z, Zhang Q, Tao H, Sang W, Cui L, Qiang W, et al. Anti-inflammatory activities of Sigesbeckia glabrescens Makino: combined in vitro and in silico investigations. Chin Med. 2019;14:35. https://doi.org/10.1186/s13020-019-0260-y (Epub 2019/10/02).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu CC. Nitric oxide and inflammation. Current medicinal chemistry-anti- inflammatory & anti-allergy agents. 2004;3(3).
Kleinert H, Pautz A, Linker K, Schwarz L. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol. 2004;500(1–3):255–66.
Article
CAS
PubMed
Google Scholar
Ryn JV, Trummlitz G, Pairet M. COX-2 selectivity and inflammatory processes. Curr Med Chem. 2000;7(11):1145–61.
Article
PubMed
Google Scholar
Saraiya NV, Goldstein DA. Dexamethasone for ocular inflammation. Expert Opin Pharmacother. 2011;12(7):1127–31.
Article
CAS
PubMed
Google Scholar
Abraham SM, Lawrence T, Kleiman A, Warden P, Medghalchi M, Tuckermann J, et al. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J Exp Med. 2006;203(8):1883–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Harbi NO, Imam F, Al-Harbi MM, Ansari MA, Zoheir KM, Korashy HM, et al. Dexamethasone attenuates LPS-induced acute lung injury through inhibition of NF-κB, COX-2, and pro-inflammatory mediators. Immunol Invest. 2016;45(4):349–69.
Article
CAS
PubMed
Google Scholar
Greaves M. Anti-inflammatory action of corticosteroids. Postgrad Med J. 1976;52(612):631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–51.
Article
CAS
PubMed
Google Scholar
Meng Z, Yan C, Deng Q, Gao D-F, Niu X-L. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacol Sin. 2013;34(7):901–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riedel CU, Foata F, Philippe D, Adolfsson O, Eikmanns BJ, Blum S. Anti-inflammatory effects of bifidobacteria by inhibition of LPS-induced NF-κB activation. 世界胃肠病学杂志 (英文版). 2006;12(023):3729–35.
Google Scholar
Schulze-Osthoff K, Ferrari D, Riehemann K, Wesselborg S. Regulation of NF-kappa B activation by MAP kinase cascades. Immunobiology. 1997;198(1–3):35–49. https://doi.org/10.1016/s0171-2985(97)80025-3.
Article
CAS
PubMed
Google Scholar
Clark AR, Dean J, Saklatvala J. The p38 MAPK pathway mediates both antiinflammatory and proinflammatory processes: comment on the article by Damjanov and the editorial by Genovese. Arthr Rhuem. 2010;60(12):3513–4.
Google Scholar
Fiebich BL, Schleicher S, Butcher RD, Craig A, Lieb K. The neuropeptide substance P activates p38 mitogen-activated protein kinase resulting in IL-6 expression independently from NF-kappa B. J Immunol. 2000;165(10):5606–11.
Article
CAS
PubMed
Google Scholar
Dan F, Ling WH, Duan RD. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-κB in macrophages. Inflamm Res. 2010;59(2):115–21.
Article
CAS
Google Scholar
Mi JS, Davaatseren M, Kim W, Park SK, Kim SH, Hur HJ, et al. Vitisin A suppresses LPS-induced NO production by inhibiting ERK, p38, and NF-kappaB activation in RAW 264.7 cells. Int Immunopharmacol. 2009;9(3):319–23.
Article
CAS
Google Scholar
Yuan Z, Froilan M, Jing W, Liang Z, Sun Z. Koumine attenuates lipopolysaccaride-stimulated inflammation in RAW264.7 macrophages, coincidentally associated with inhibition of NF-κB, ERK and p38 pathways. Int J Mol Sci. 2016;17(3):430.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kotlyarov A, Neininger A, Schubert C, et al. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nat Cell Biol. 1999;1(2):94–7.
Article
CAS
PubMed
Google Scholar
Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain. 1995;63(3):289–302.
Article
PubMed
Google Scholar
Liu J, Xin L, Yang Y, Li J, Tao H, He Y. The inhibitory effect of quercetin on IL-6 production by LPS-stimulated neutrophils. Cell Mol Immunol. 2005;2(006):455–60.
CAS
PubMed
Google Scholar
Askaripour M, Najafipour H, Saberi S, Jafari E, Rajabi S. Daidzein mitigates oxidative stress and inflammation in the injured kidney of ovariectomized rats: AT1 and Mas receptor functions. Iran J Kidney Dis. 2022;1(1):32.
PubMed
Google Scholar
Zhao D, Shi Y, Dang Y, Zhai Y, Ye X. Daidzein stimulates collagen synthesis by activating the TGF-β/smad signal pathway. Australas J Dermatol. 2015;56(1):e7–14.
Article
PubMed
Google Scholar
Danciu C, Avram S, Pavel IZ, Ghiulai R, Dehelean CA, Ersilia A, Minda D, Petrescu C, Moaca EA, Soica C. Main isoflavones found in dietary sources as natural anti-inflammatory agents. Curr Drug Targets. 2017;19(7):841–53.
Article
CAS
Google Scholar
Zhai S, Zhang XF, Lu F, Chen WG, He X, Zhang CF, et al. Chinese medicine GeGen-DanShen extract protects from myocardial ischemic injury through promoting angiogenesis via up-regulation of VEGF/VEGFR2 signaling pathway. J Ethnopharmacol. 2020;267:113475.
Article
PubMed
CAS
Google Scholar
Ming Z, Qian Z. Herbological investigation on traditional Chinese medicine gegen. Zhong yao cai = Zhongyaocai = J Chin Med Mater. 2000;23(1):46.
Google Scholar