Mirrakhimov AE, Strohl KP. High-altitude pulmonary hypertension: an update on disease pathogenesis and management. Open Cardiovasc Med J. 2016;10:19–27.
Article
PubMed
PubMed Central
Google Scholar
Pasha MA, Newman JH. High-altitude disorders: pulmonary hypertension: pulmonary vascular disease: the global perspective. Chest. 2010;137:13S-19S.
Article
PubMed
Google Scholar
Pena E, Brito J, El Alam S, Siques P. Oxidative stress, kinase activity and inflammatory implications in right ventricular hypertrophy and heart failure under hypobaric hypoxia. Int J Mol Sci. 2020;21:6421.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sharifi Kia D, Benza E, Bachman TN, Tushak C, Kim K, Simon MA. Angiotensin receptor-neprilysin inhibition attenuates right ventricular remodeling in pulmonary hypertension. J Am Heart Assoc. 2020. https://doi.org/10.1161/JAHA.119.015708.
Article
PubMed
PubMed Central
Google Scholar
Preston IR. Clinical perspective of hypoxia-mediated pulmonary hypertension. Antioxid Redox Signal. 2007;9:711–21.
Article
PubMed
CAS
Google Scholar
Ryan JJ, Huston J, Kutty S, Hatton ND, Bowman L, Tian L, Herr JE, Johri AM, Archer SL. Right ventricular adaptation and failure in pulmonary arterial hypertension. Can J Cardiol. 2015;31:391–406.
Article
PubMed
Google Scholar
Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res. 2014;115:176–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62:D22-33.
Article
PubMed
Google Scholar
Zuo XR, Wang Q, Cao Q, Yu YZ, Wang H, Bi LQ, Xie WP, Wang H. Nicorandil prevents right ventricular remodeling by inhibiting apoptosis and lowering pressure overload in rats with pulmonary arterial hypertension. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0044485.
Article
PubMed
PubMed Central
Google Scholar
Wang Z, Chesler NC. Pulmonary vascular mechanics: important contributors to the increased right ventricular afterload of pulmonary hypertension. Exp Physiol. 2013;98:1267–73.
Article
PubMed
PubMed Central
Google Scholar
Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135:794–804.
Article
PubMed
CAS
Google Scholar
Sun F, Lu Z, Zhang Y, Geng S, Xu M, Xu L, Huang Y, Zhuang P, Zhang Y. Stage-dependent changes of β2-adrenergic receptor signaling in right ventricular remodeling in monocrotaline-induced pulmonary arterial hypertension. Int J Mol Med. 2018;41:2493–504.
PubMed
PubMed Central
CAS
Google Scholar
Wu J, Fu Y, Wu YX, Wu ZX, Wang ZH, Li P. Lycorine ameliorates isoproterenol-induced cardiac dysfunction mainly via inhibiting inflammation, fibrosis, oxidative stress and apoptosis. Bioengineered. 2021;12:5583–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zungu-Edmondson M, Shults NV, Wong CM, Suzuki YJ. Modulators of right ventricular apoptosis and contractility in a rat model of pulmonary hypertension. Cardiovasc Res. 2016;110:30–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abbate A, Narula J. Role of apoptosis in adverse ventricular remodeling. Heart Fail Clin. 2012;8:79–86.
Article
PubMed
Google Scholar
van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67:21–9.
Article
PubMed
Google Scholar
Yang Z, Sun H, Su S, Nan X, Li K, Jin X, Jin G, Li Z, Lu D. Tsantan Sumtang restored right ventricular function in chronic hypoxia-induced pulmonary hypertension rats. Front Pharmacol. 2020;11: 607384.
Article
PubMed
CAS
Google Scholar
Ren W, Gao S, Zhang H, Ren Y, Yu X, Lin W, Guo S, Zhu R, Wang W. Decomposing the mechanism of Qishen Granules in the treatment of heart failure by a quantitative pathway analysis method. Molecules. 1829;2018:23.
Google Scholar
Huang H, Shan K, Cai M, Chen H, Wu F, Zhao X, Zhuang H, Li H, Shi S. “Yiqi Huayu, Wenyang Lishui” Prescription (YHWLP) Improves the symptoms of chronic obstructive pulmonary disease-induced chronic pulmonary heart disease by inhibiting the RhoA/ROCK signaling pathway. Evid Based Complement Alternat Med. 2021;2021:6636426.
Article
PubMed
PubMed Central
Google Scholar
Huang J, Xie Y, Li H, Zhang X, Huang Q, Zhu Y, Gu P, Jiang W. YQWY decoction reverses cardiac hypertrophy induced by TAC through inhibiting GATA4 phosphorylation and MAPKs. Chin J Nat Med. 2019;17:746–55.
PubMed
CAS
Google Scholar
Wang J, Deng B, Liu J, Liu Q, Guo Y, Yang Z, Fang C, Lu L, Chen Z, Xian S, et al. Xinyang Tablet inhibits MLK3-mediated pyroptosis to attenuate inflammation and cardiac dysfunction in pressure overload. J Ethnopharmacol. 2021;274: 114078.
Article
PubMed
CAS
Google Scholar
Huang YS, Xian SX, Ding YQ, Lu LP, Chen YP, Wu H. Clinical study of Baoxinkang in treating congestive heart Failure with Qi-Yang deficiency. Traditional Chin Drug Res Clin Pharmacol. 2000;11:261–5.
Google Scholar
Guo YN, JL, JY W, L Z, L Z, SX X, ZQ Y, LJ W, YS H: Study on Effect and Mechanism of Xinyang Tablet-containing Serum Regulating NLRP3-Mediated Pyrocytosis and Protecting Myocardial Cell Inflammation. Chinese Archives Traditional Chin Med. 2021. 39:92–97. Accessed Mar 2022
Luo CF, YS H, XY C, SX X, YD H, YD L: Effect of Baoxinkang on the expression of Bax and Bcl-2 protein in heart failure rat cardiomyocytes. J Guangzhou University of Traditional Chin Med. 2004. 21:5. [Accessed date: Aug., 2021]
Luo CF, Huang YS, Liu YC, Xian SX, Hong YD, Liu YD. Sequence changes of left ventricular hypertrophy in pressure overload rats and intervention effect of Baoxinkang. Inner Mongolia Traditional Chin Med. 2006;25:2.
Google Scholar
Dang Z, Su S, Jin G, Nan X, Ma L, Li Z, Lu D, Ge R. Tsantan Sumtang attenuated chronic hypoxia-induced right ventricular structure remodeling and fibrosis by equilibrating local ACE-AngII-AT1R/ACE2-Ang1-7-Mas axis in rat. J Ethnopharmacol. 2020;250: 112470.
Article
PubMed
CAS
Google Scholar
Chen F, Wang H, Lai J, Cai S, Yuan L. 3-Bromopyruvate reverses hypoxia-induced pulmonary arterial hypertension through inhibiting glycolysis: in vitro and in vivo studies. Int J Cardiol. 2018;266:236–41.
Article
PubMed
Google Scholar
Shi YN, Zhang XQ, Hu ZY, Zhang CJ, Liao DF, Huang HL, Qin L. Genistein protects H9c2 cardiomyocytes against chemical hypoxia-induced injury via inhibition of apoptosis. Pharmacology. 2019;103:282–90.
Article
PubMed
CAS
Google Scholar
Shimoda LA. Cellular pathways promoting pulmonary vascular remodeling by hypoxia. Physiology (Bethesda). 2020;35:222–33.
PubMed
CAS
Google Scholar
Chen L, Liu P, Feng X, Ma C. Salidroside suppressing LPS-induced myocardial injury by inhibiting ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo. J Cell Mol Med. 2017;21:3178–89.
Article
PubMed
PubMed Central
CAS
Google Scholar
van der Bruggen CEE, Tedford RJ, Handoko ML, van der Velden J, de Man FS. RV pressure overload: from hypertrophy to failure. Cardiovasc Res. 2017;113:1423–32.
Article
PubMed
Google Scholar
Brogden RN, Todd PA, Sorkin EM. Captopril: an update of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs. 1988;36:540–600.
Article
PubMed
CAS
Google Scholar
Miguel-Carrasco JL, Zambrano S, Blanca AJ, Mate A, Vázquez CM. Captopril reduces cardiac inflammatory markers in spontaneously hypertensive rats by inactivation of NF-kB. J Inflamm (Lond). 2010;7:21.
Article
PubMed
Google Scholar
Zhang Y, Zhang L, Fan X, Yang W, Yu B, Kou J, Li F. Captopril attenuates TAC-induced heart failure via inhibiting Wnt3a/β-catenin and Jak2/Stat3 pathways. Biomed Pharmacother. 2019;113: 108780.
Article
PubMed
CAS
Google Scholar
Huang X, Wu P, Huang F, Xu M, Chen M, Huang K, Li GP, Xu M, Yao D, Wang L. Baicalin attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A(2A) receptor-induced SDF-1/CXCR4/PI3K/AKT signaling. J Biomed Sci. 2017;24:52.
Article
PubMed
PubMed Central
Google Scholar
Sharma RK, Oliveira AC, Yang T, Karas MM, Li J, Lobaton GO, Aquino VP, Robles-Vera I, de Kloet AD, Krause EG, et al. Gut pathology and its rescue by ACE2 (Angiotensin-Converting Enzyme 2) in hypoxia-induced pulmonary hypertension. Hypertension. 2020;76:206–16.
Article
PubMed
CAS
Google Scholar
Kocken JMM, da Costa Martins PA. Epigenetic regulation of pulmonary arterial hypertension-induced vascular and right ventricular remodeling: new opportunities? Int J Mol Sci. 2020;21:8901.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89:1401–38.
Article
PubMed
CAS
Google Scholar
Sun F, Lu Z, Zhang Y, Geng S, Xu M, Xu L, Huang Y, Zhuang P, Zhang Y. Stagedependent changes of beta2adrenergic receptor signaling in right ventricular remodeling in monocrotalineinduced pulmonary arterial hypertension. Int J Mol Med. 2018;41:2493–504.
PubMed
PubMed Central
CAS
Google Scholar
Schultz JG, Andersen S, Andersen A, Nielsen-Kudsk JE, Nielsen JM. Evaluation of cardiac electrophysiological properties in an experimental model of right ventricular hypertrophy and failure. Cardiol Young. 2016;26:451–8.
Article
PubMed
Google Scholar
Windsor JS, Rodway GW, Montgomery HE. A review of electrocardiography in the high altitude environment. High Alt Med Biol. 2010;11:51–60.
Article
PubMed
Google Scholar
Egemnazarov B, Crnkovic S, Nagy BM, Olschewski H, Kwapiszewska G. Right ventricular fibrosis and dysfunction: Actual concepts and common misconceptions. Matrix Biol. 2018;68–69:507–21.
Article
PubMed
Google Scholar
Wollert KC, Drexler H. Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis. Heart Fail Rev. 2002;7:317–25.
Article
PubMed
CAS
Google Scholar
Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L, Tremblay J, Schwartz K, Hamet P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest. 1996;97:2891–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Flores-Romero H, Hohorst L, John M, Albert MC, King LE, Beckmann L, Szabo T, Hertlein V, Luo X, Villunger A, et al. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J. 2022. https://doi.org/10.15252/embj.2021108690.
Article
PubMed
Google Scholar
Huang X, Zou L, Yu X, Chen M, Guo R, Cai H, Yao D, Xu X, Chen Y, Ding C, et al. Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway. J Mol Cell Cardiol. 2015;82:153–66.
Article
PubMed
CAS
Google Scholar
Sun XQ, Abbate A, Bogaard HJ. Role of cardiac inflammation in right ventricular failure. Cardiovasc Res. 2017;113:1441–52.
Article
PubMed
CAS
Google Scholar
Sun M, Chen M, Dawood F, Zurawska U, Li JY, Parker T, Kassiri Z, Kirshenbaum LA, Arnold M, Khokha R, et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation. 2007;115:1398–407.
Article
PubMed
CAS
Google Scholar
Freund C, Schmidt-Ullrich R, Baurand A, Dunger S, Schneider W, Loser P, El-Jamali A, Dietz R, Scheidereit C, Bergmann MW. Requirement of nuclear factor-kappaB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation. 2005;111:2319–25.
Article
PubMed
CAS
Google Scholar
Jude B, Vetel S, Giroux-Metges MA, Pennec JP. Rapid negative inotropic effect induced by TNF-α in rat heart perfused related to PKC activation. Cytokine. 2018;107:65–9.
Article
PubMed
CAS
Google Scholar
Meléndez GC, McLarty JL, Levick SP, Du Y, Janicki JS, Brower GL. Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension. 2010;56:225–31.
Article
PubMed
Google Scholar
Li M, Li K, Ren Y. Nesfatin-1 protects H9c2 cardiomyocytes against cobalt chloride-induced hypoxic injury by modulating the MAPK and Notch1 signaling pathways. J Biol Res (Thessalon). 2021;28:21.
Article
PubMed
CAS
Google Scholar