Wagner H, Püls S, Barghouti T, et al. Herba Taxilli-Sangjisheng. Chromatographic fingerprint analysis of herbal medicines, vol. V. Springer; 2017. p. 63–70.
Google Scholar
Zhao ZZ. An illustrated Chinese materia medica in Hong Kong. World Scientific; 2004.
Google Scholar
Liu B, Zhang Y, Shi Y. Complete chloroplast genome sequence of Taxillus chinensis (Loranthaceae): a hemiparasitic shrub in South China. Mitochondrial DNA B Resour. 2019;4(2):3077–8. https://doi.org/10.1080/23802359.2019.1666680.
Article
Google Scholar
Shen P, Lin W, Ba X, et al. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis. J Ethnopharmacol. 2021;279: 114213. https://doi.org/10.1016/j.jep.2021.114213.
Article
CAS
Google Scholar
Yang M, Luo J, Li Y, et al. Systems pharmacology-based research on the mechanism of Tusizi-Sangjisheng herb pair in the treatment of threatened abortion. Biomed Res Int. 2020;2020:4748264. https://doi.org/10.1155/2020/4748264.
Article
CAS
Google Scholar
Wang Y, Deng M, Zhang SY, et al. Parasitic loranthus from Loranthaceae rather than Viscaceae potently inhibits fatty acid synthase and reduces body weight in mice. J Ethnopharmacol. 2008;118(3):473–8. https://doi.org/10.1016/j.jep.2008.05.016.
Article
CAS
Google Scholar
Liu CY, Lin YC, Deng JS, et al. Antioxidant, anti-inflammatory, and antiproliferative activities of Taxillus sutchuenensis. Am J Chin Med. 2012;40(2):335–48. https://doi.org/10.1142/S0192415X12500267.
Article
CAS
Google Scholar
Wang Y, Zhang SY, Ma XF, et al. Potent inhibition of fatty acid synthase by parasitic loranthus [Taxillus chinensis (DC.) Danser] and its constituent avicularin. J Enzyme Inhib Med Chem. 2006;21(1):87–93. https://doi.org/10.1080/14756360500472829.
Article
CAS
Google Scholar
Zhu KX, Su BW, Zhao MH, et al. Research progress on the Taxilli Herba to strengthen muscles and bones. J China Prescr Drug. 2018;16(07):25–6.
Google Scholar
Commission CP. Chinese pharmacopoeia. Beijing: People’s Medical Publishing House; 2020
Hu XM, Zhang WK, Zhu QS. Zhonghua Bencao. Shanghai: Shanghai Science and Technology Publications; 1998. p. 225–6.
Google Scholar
Wu N, Li L, Cai ZC, et al. Quality evaluation of Taxilli Herba from different hosts based on simultaneous determination of multiple bioactive constituents combined with multivariate statistical analysis. Molecules. 2021;26(24):7490. https://doi.org/10.3390/molecules26247490.
Article
CAS
Google Scholar
Li YH, Ruan JL, Chen SL, et al. Authentication of Taxillus chinensis using DNA barcoding technique. J Med Plants Res. 2010;4(24):2706–9. https://doi.org/10.5897/JMPR09.677.
Article
CAS
Google Scholar
Wei SG, Pan LM, He LL, et al. Study on the breeding technique of Taxillus chinensis (DC.) Danser. J Guangxi Academy Sci. 2019;35(01):51–5. https://doi.org/10.13657/j.cnki.gxkxyxb.20190123.006.
Article
Google Scholar
Wu P, Sun X, Sun F. Shen nong ben cao jing: Shang wu yin shu guan; 1955.
He J. Sheng Cao Yao Xing Bei Yao: Huaxia Publishing House. Beijing; 1999.
Huang GX, Wang SM. Ben cao qiu zhen: Zhongguo Zhong yi yao chu ban she; 1997.
Zhang L, Zhao XQ, Pei XF. Ben jing feng yuan: Zhongguo Zhong yi yao chu ban she; 1996.
Zhen Q, Shang ZJ. Yao Xing Lun. Heifei: Anhui Science and Technology Publishing House; 2006. p. 79.
Google Scholar
Qu F, Zhou J. Treating threatened abortion with Chinese herbs: a case report. Phytother Res. 2006;20(10):915–6. https://doi.org/10.1002/ptr.1979.
Article
Google Scholar
Ding J, Tan X, Song K, et al. Bushen Huoxue Recipe alleviates implantation loss in mice by enhancing estrogen-progesterone signals and promoting decidual angiogenesis through FGF2 during early pregnancy. Front Pharmacol. 2018;9:437. https://doi.org/10.3389/fphar.2018.00437.
Article
CAS
Google Scholar
Zhou J, Li LS, Zhou Q, et al. The role of quercetin in the treatment of spontaneous abortion and its molecular mechanism. J Tradit China Med. 2020;61(13):1188–93. https://doi.org/10.13288/j.11-2166/r.2020.13.016.
Article
Google Scholar
Lan M. Southern Yunnan Materia Medica. Kunming: Yunnan’s Medical Publishing House; 2000. p. 13.
Google Scholar
Yuan JH, Wu N, Wang WX, et al. Analysis on the difference of chemical constituents in Taxilli Herba from different host plants. Nat Prod Res Dev. 2022;33(07):1119–28. https://doi.org/10.16333/j.1001-6880.2022.7.004.
Article
Google Scholar
Lu SH, Gan YY, Tang L, et al. Evaluation of the quality of Taxillus chinensis from different hosts sources by HPLC fingerprint combined with chemometrics. China Pharm. 2020;31(07):794–9. https://doi.org/10.6039/j.issn.1001-0408.2020.07.06.
Article
Google Scholar
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423–35. https://doi.org/10.3945/an.116.012948.
Article
CAS
Google Scholar
Yuan J, Li L, Cai Z, et al. Qualitative analysis and componential differences of chemical constituents in Taxilli Herba from different hosts by UFLC-Triple TOF-MS/MS. Molecules. 2021. https://doi.org/10.3390/molecules26216373.
Article
Google Scholar
Li L, Teng J, Zhu Y, et al. Metabolomics study of flavonoids of Taxillus chinensis on different hosts using UPLC-ESI-MS/MS. Molecules. 2021;26(24):7681. https://doi.org/10.3390/molecules26247681.
Article
CAS
Google Scholar
Zhang X, Liu C, Nepal S, et al. A hybrid approach for scalable sub-tree anonymization over big data using MapReduce on cloud. J Comput Syst Sci. 2014;80(5):1008–20. https://doi.org/10.1016/j.jcss.2014.02.007.
Article
Google Scholar
Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019;299: 125124. https://doi.org/10.1016/j.foodchem.2019.125124.
Article
CAS
Google Scholar
Liu SS, Liu Q, He CN, et al. Application history and modern research progress of Taxillus chinensis herb tea. Mod Chin Med. 2019;21(02):147–53. https://doi.org/10.13313/j.issn.1673-4890.20180920006.
Article
Google Scholar
Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018;62(1):1700447. https://doi.org/10.1002/mnfr.201700447.
Article
CAS
Google Scholar
Satari A, Ghasemi S, Habtemariam S, et al. Rutin: a flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy. Evid Based Complement Altern Med. 2021;2021:9913179. https://doi.org/10.1155/2021/9913179.
Article
Google Scholar
Valentova K, Vrba J, Bancirova M, et al. Isoquercitrin: pharmacology, toxicology, and metabolism. Food Chem Toxicol. 2014;68:267–82. https://doi.org/10.1016/j.fct.2014.03.018.
Article
CAS
Google Scholar
Bialecka-Florjanczyk E, Fabiszewska A, Zieniuk B. Phenolic acids derivatives - biotechnological methods of synthesis and bioactivity. Curr Pharm Biotechnol. 2018;19(14):1098–113. https://doi.org/10.2174/1389201020666181217142051.
Article
CAS
Google Scholar
Valanciene E, Jonuskiene I, Syrpas M, et al. Advances and prospects of phenolic acids production, biorefinery and analysis. Biomolecules. 2020;10(6):874. https://doi.org/10.3390/biom10060874.
Article
CAS
Google Scholar
Li S, Xu M, Niu Q, et al. Efficacy of procyanidins against in vivo cellular oxidative damage: a systematic review and meta-analysis. PLoS ONE. 2015;10(10): e139455. https://doi.org/10.1371/journal.pone.0139455.
Article
CAS
Google Scholar
Lee Y. Cancer chemopreventive potential of procyanidin. Toxicol Res. 2017;33(4):273–82. https://doi.org/10.5487/TR.2017.33.4.273.
Article
CAS
Google Scholar
Gonzalez-Abuin N, Pinent M, Casanova-Marti A, et al. Procyanidins and their healthy protective effects against type 2 diabetes. Curr Med Chem. 2015;22(1):39–50. https://doi.org/10.2174/0929867321666140916115519.
Article
CAS
Google Scholar
Ding B, Dai Y, Hou YL, et al. Four new hemiterpenoid derivatives from Taxillus chinensis. Fitoterapia. 2013;86:1–5. https://doi.org/10.1016/j.fitote.2013.01.017.
Article
CAS
Google Scholar
Dong L. Study on salicin content correlation between Taxilli Herba and their willow host plants. J Med Plants Res. 2012;6(12):2474–7. https://doi.org/10.5897/JMPR11.1735.
Article
CAS
Google Scholar
Hildebrandt TM, Nunes NA, Araujo WL, et al. Amino acid catabolism in plants. Mol Plant. 2015;8(11):1563–79. https://doi.org/10.1016/j.molp.2015.09.005.
Article
CAS
Google Scholar
Yamaguchi Y, Yamamoto K, Sato Y, et al. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation. Biomed Res. 2016;37(2):153–9. https://doi.org/10.2220/biomedres.37.153.
Article
CAS
Google Scholar
Oliveira GP, de Abreu MG, Pelosi P, et al. Exogenous glutamine in respiratory diseases: myth or reality? Nutrients. 2016;8(2):76. https://doi.org/10.3390/nu8020076.
Article
CAS
Google Scholar
Ren W, Bin P, Yin Y, et al. Impacts of amino acids on the intestinal defensive system. Adv Exp Med Biol. 2020;1265:133–51. https://doi.org/10.1007/978-3-030-45328-2_8.
Article
CAS
Google Scholar
Moghadamtousi SZ, Kamarudin MN, Chan CK, et al. Phytochemistry and biology of Loranthus parasiticus Merr, a commonly used herbal medicine. Am J Chin Med. 2014;42(1):23–35. https://doi.org/10.1142/S0192415X14500025.
Article
Google Scholar
Li XF, Fang RZ, Feng H, et al. Study on the mechanism of Taxillus chinensis (DC.) Danser of tonifying liver and kidney, strengthening muscles and bones based on network pharmacology. Chin J Ethnomed Ethnophar. 2021;30(06):16–26.
Google Scholar
Wang W, Zheng H, Zheng M, et al. Protective effect of avicularin on rheumatoid arthritis and its associated mechanisms. Exp Ther Med. 2018;16(6):5343–9. https://doi.org/10.3892/etm.2018.6872.
Article
CAS
Google Scholar
Zhuo ZM, Fan ZC, Guo X. Effect of herba taxilli extracts combined with miR-375 on viability and apoptosis of osteoarthritic chondrocytes. Chin J Pathophysiol. 2020;36(06):1082–8. https://doi.org/10.3969/j.issn.1000-4718.2020.06.017.
Article
Google Scholar
Zhao Y. Observation of the clinical efficacy of renal and hepatic thinning in the treatment of chronic pelvic inflammatory disease. Aisa-Pac Tradit Med. 2015;11(01):84–5. https://doi.org/10.11954/ytctyy.201501041.
Article
Google Scholar
Wu JY, Zhang W, Lei Q. Experience in the treatment of chronic glomerulonephritis. Henan Tradit Med. 2012;32(2):182–3. https://doi.org/10.16367/j.issn.1003-5028.2012.02.031.
Article
Google Scholar
Zhang L, Ravipati AS, Koyyalamudi SR, et al. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J Agric Food Chem. 2011;59(23):12361–7. https://doi.org/10.1021/jf203146e.
Article
CAS
Google Scholar
Blaser H, Dostert C, Mak TW, et al. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26(4):249–61. https://doi.org/10.1016/j.tcb.2015.12.002.
Article
CAS
Google Scholar
Lee HN, Shin SA, Choo GS, et al. Anti-inflammatory effect of quercetin and galangin in LPS-stimulated RAW264.7 macrophages and DNCB-induced atopic dermatitis animal models. Int J Mol Med. 2018;41(2):888–98. https://doi.org/10.3892/ijmm.2017.3296.
Article
CAS
Google Scholar
Guan Q, Zhang H. Study on anti-inflammatory action and analgesic effect of single antirheumatic Chinese Medicine. J Clin Ration Drug Use. 2012;5(19):6–7. https://doi.org/10.15887/j.cnki.13-1389/r.2012.19.020.
Article
Google Scholar
Palace VP, Khaper N, Qin Q, et al. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic Biol Med. 1999;26(5–6):746–61. https://doi.org/10.1016/s0891-5849(98)00266-4.
Article
CAS
Google Scholar
Ozben T. Antioxidant supplementation on cancer risk and during cancer therapy: an update. Curr Top Med Chem. 2015;15(2):170–8.
Article
CAS
Google Scholar
Kattoor AJ, Pothineni N, Palagiri D, et al. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19(11):42. https://doi.org/10.1007/s11883-017-0678-6.
Article
CAS
Google Scholar
Xu X, Jin K, Bais AS, et al. Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell. 2022;29(5):840–55. https://doi.org/10.1016/j.stem.2022.03.003.
Article
CAS
Google Scholar
Lignitto L, LeBoeuf SE, Homer H, et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of bach1. Cell. 2019;178(2):316–29. https://doi.org/10.1016/j.cell.2019.06.003.
Article
CAS
Google Scholar
Saha S, Panieri E, Suzen S, et al. The interaction of flavonols with membrane components: potential effect on antioxidant activity. J Membr Biol. 2020;253(1):57–71. https://doi.org/10.1007/s00232-019-00105-1.
Article
CAS
Google Scholar
Catarino MD, Alves-Silva JM, Pereira OR, et al. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. Curr Top Med Chem. 2015;15(2):105–19.
Article
CAS
Google Scholar
Huo LN, Chen R, Liao YF, et al. Antioxidant activity of the extract from Taxillus chinensis parasitized on Clausena lansium (Lour.) Skeels. Hubei Agric Sci. 2014;53(11):2631–3. https://doi.org/10.14088/j.cnki.issn0439-8114.2014.11.003.
Article
Google Scholar
Chen BH, Lai JJ, Zheng Q, et al. Effects of different extraction solvents on the antioxidant activities of leaves extracts of Scurrula parasitica. J Fujian Norm Univ. 2010;26(1):86–90.
Google Scholar
Jiao R, Liu Y, Gao H, et al. The anti-oxidant and antitumor properties of plant polysaccharides. Am J Chin Med. 2016;44(3):463–88. https://doi.org/10.1142/S0192415X16500269.
Article
CAS
Google Scholar
Luo Y, Peng B, Wei W, et al. Antioxidant and anti-diabetic activities of polysaccharides from guava leaves. Molecules. 2019;24(7):1343. https://doi.org/10.3390/molecules24071343.
Article
CAS
Google Scholar
Zeng P, Li J, Chen Y, et al. The structures and biological functions of polysaccharides from traditional Chinese herbs. Prog Mol Biol Transl Sci. 2019;163:423–44. https://doi.org/10.1016/bs.pmbts.2019.03.003.
Article
CAS
Google Scholar
Zhang L, Koyyalamudi SR, Jeong SC, et al. Immunomodulatory activities of polysaccharides isolated from Taxillus chinensis and Uncaria rhyncophylla. Carbohydr Polym. 2013;98(2):1458–65. https://doi.org/10.1016/j.carbpol.2013.07.060.
Article
CAS
Google Scholar
Bar J, Onn A. Combined anti-proliferative and anti-angiogenic strategies for cancer. Expert Opin Pharmacother. 2008;9(5):701–15. https://doi.org/10.1517/14656566.9.5.701.
Article
CAS
Google Scholar
Barros PP, Eisinger A, GonCalves G, et al. Oral rutin suspension intervene in hepatic hyperplasia in rats. Arq Gastroenterol. 2020;57(3):296–9. https://doi.org/10.1590/S0004-2803.202000000-54.
Article
Google Scholar
Ezzati M, Yousefi B, Velaei K, et al. A review on anti-cancer properties of quercetin in breast cancer. Life Sci. 2020;248: 117463. https://doi.org/10.1016/j.lfs.2020.117463.
Article
CAS
Google Scholar
Choi BY. Biochemical basis of anti-cancer-effects of phloretin-A natural dihydrochalcone. Molecules. 2019;24(2):278. https://doi.org/10.3390/molecules24020278.
Article
CAS
Google Scholar
Park GH, Song HM, Park SB, et al. Anti-proliferative activity of ethanol extracts from Taxilli Ramulus (Taxillus chinensis (DC.) Danser) through cyclin D1 proteasomal degradation in human colorectal cancer cells. Korean J Plant Res. 2017;30(6):640–6. https://doi.org/10.7732/kjpr.2017.30.6.640.
Article
Google Scholar
Feng HY, Liu Z, Fu ZX. Mechanism and effect of water extract from herba taxilli on the invasion and migration of human colorectal cancer HT-29 cells. Zhejiang Med J. 2020;42(07):666–9. https://doi.org/10.12056/j.issn.1006-2785.2020.42.7.2019-2962.
Article
Google Scholar
Zhang J, Zhou XX, Liang Y, et al. Study on the anti-leukemia effect of Taxillus chinensis (DC.) Danser in different extraction sites. Lishizhen Med Mater Med Res. 2011;22(10):2452–4. https://doi.org/10.3969/j.issn.1008-0805.2011.10.059.
Article
Google Scholar
Yang JH, Hsia TC, Kuo HM, et al. Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos. 2006;34(2):296–304. https://doi.org/10.1124/dmd.105.005280.
Article
CAS
Google Scholar
Choi JA, Kim JY, Lee JY, et al. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol. 2001;19(4):837–44. https://doi.org/10.3892/ijo.19.4.837.
Article
CAS
Google Scholar
Zizkova P, Stefek M, Rackova L, et al. Novel quercetin derivatives: from redox properties to promising treatment of oxidative stress related diseases. Chem Biol Interact. 2017;265:36–46. https://doi.org/10.1016/j.cbi.2017.01.019.
Article
CAS
Google Scholar
Ghafouri-Fard S, Shabestari FA, Vaezi S, et al. Emerging impact of quercetin in the treatment of prostate cancer. Biomed Pharmacother. 2021;138: 111548. https://doi.org/10.1016/j.biopha.2021.111548.
Article
CAS
Google Scholar
Lee TJ, Kim OH, Kim YH, et al. Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett. 2006;240(2):234–42. https://doi.org/10.1016/j.canlet.2005.09.013.
Article
CAS
Google Scholar
Maso V, Calgarotto AK, Franchi GJ, et al. Multitarget effects of quercetin in leukemia. Cancer Prev Res (Phila). 2014;7(12):1240–50. https://doi.org/10.1158/1940-6207.CAPR-13-0383.
Article
CAS
Google Scholar
Na W, Ma B, Shi S, et al. Procyanidin B1, a novel and specific inhibitor of Kv10.1 channel, suppresses the evolution of hepatoma. Biochem Pharmacol. 2020;178:114089. https://doi.org/10.1016/j.bcp.2020.114089.
Article
CAS
Google Scholar
Koteswari LL, Kumari S, Kumar AB, et al. A comparative anticancer study on procyanidin C1 against receptor positive and receptor negative breast cancer. Nat Prod Res. 2020;34(22):3267–74. https://doi.org/10.1080/14786419.2018.1557173.
Article
CAS
Google Scholar
Khan H, Saeedi M, Nabavi SM, et al. Glycosides from medicinal plants as potential anticancer agents: emerging trends towards future drugs. Curr Med Chem. 2019;26(13):2389–406. https://doi.org/10.2174/0929867325666180403145137.
Article
CAS
Google Scholar
Zhang LS, Liu SL. Isolation of anti-cancer proteins from Lorathlorace and part property studying. Nat Prod Res Dev. 2006;18(01):43–6. https://doi.org/10.16333/j.1001-6880.2006.01.011.
Article
CAS
Google Scholar
Pan X, Liu SL. Isolation and characterization of antitumor lectins from Chinese herbs Loranthaceae. Nat Prod Res Dev. 2006;18(02):210–3. https://doi.org/10.16333/j.1001-6880.2006.02.007.
Article
CAS
Google Scholar
Wen CC, Shyur LF, Jan JT, et al. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J Tradit Complement Med. 2011;1(1):41–50. https://doi.org/10.1016/s2225-4110(16)30055-4.
Article
Google Scholar
Zheng MS, Zheng YF. Experimental study on the inhibition of hepatitis B virus surface antigen by 1000 kinds of Chinese herbal medicine. J Tradit Chin Med. 1989;11:47–8. https://doi.org/10.13288/j.11-2166/r.1989.11.023.
Article
Google Scholar
Wang GF, Shi LP, Ren YD, et al. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res. 2009;83(2):186–90. https://doi.org/10.1016/j.antiviral.2009.05.002.
Article
CAS
Google Scholar
Chidambaram SK, Ali D, Alarifi S, et al. In silico molecular docking: evaluation of coumarin based derivatives against SARS-CoV-2. J Infect Public Health. 2020;13(11):1671–7. https://doi.org/10.1016/j.jiph.2020.09.002.
Article
Google Scholar
Touaibia M, Jean-Francois J, Doiron J. Caffeic acid, a versatile pharmacophore: an overview. Mini Rev Med Chem. 2011;11(8):695–713. https://doi.org/10.2174/138955711796268750.
Article
CAS
Google Scholar
Khan F, Bamunuarachchi NI, Tabassum N, et al. Caffeic acid and its derivatives: antimicrobial drugs toward microbial pathogens. J Agric Food Chem. 2021;69(10):2979–3004. https://doi.org/10.1021/acs.jafc.0c07579.
Article
CAS
Google Scholar
Buttner S, Koch A, Pfeilschifter J. Diuretic therapy. Dtsch Med Wochenschr. 2019;144(6):387–92. https://doi.org/10.1055/a-0661-4426.
Article
CAS
Google Scholar
Liu WF, Huang XJ, Xia LX, et al. Research progress on functional mechanisms of diuretic antihypertensive herbs. SH J TCM. 2011;45(09):73–8. https://doi.org/10.16305/j.1007-1334.2011.09.031.
Article
Google Scholar
Wang J. Sang parasitic research overview. J Pract Tradit Chin Intern Med. 2018;32(01):74–7. https://doi.org/10.13729/j.issn.1671-7813.Z20170473.
Article
Google Scholar
Chen LS. Pharmacological research on Loranthus parasiticus (L.) Merr. Shanxi J Tradit Chin Med. 2000;21(11):520–1.
Google Scholar
Christie S, Walker AF, Lewith GT. Flavonoids–a new direction for the treatment of fluid retention? Phytother Res. 2001;15(6):467–75. https://doi.org/10.1002/ptr.1011.
Article
CAS
Google Scholar
Somova LO, Nadar A, Rammanan P, et al. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine. 2003;10(2–3):115–21. https://doi.org/10.1078/094471103321659807.
Article
CAS
Google Scholar
Layne K, Ferro A. Traditional Chinese medicines in the management of cardiovascular diseases: a comprehensive systematic review. Br J Clin Pharmacol. 2017;83(1):20–32. https://doi.org/10.1111/bcp.13013.
Article
Google Scholar
Roth GA, Forouzanfar MH, Moran AE, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015;372(14):1333–41. https://doi.org/10.1056/NEJMoa1406656.
Article
CAS
Google Scholar
Yin P, Li YM, Li XW, et al. Clinical analysis of Liver-Yang hyperactivity type hypertension treatment by Tianma Gouteng Decoction. China Contin Med Educ. 2016;8(16):179–80. https://doi.org/10.3969/j.issn.1674-9308.2016.16.127.
Article
Google Scholar
Zhang H, Huang FY, Liu RY, et al. Effects of Taxilli Herba from different hosts on lowering blood pressure of spontaneously hypertensive rats. Chin Tradit Pat Med. 2018;40(02):249–54. https://doi.org/10.3969/j.issn.1001-1528.2018.02.001.
Article
Google Scholar
Hou GJ, Qin XJ, Hou XM, et al. Study on the hypotensive effect and mechanism of quercetin on rats with renal hypertension. Chin J Integr Med Cerebrovasc Dis. 2016;14(02):137–9. https://doi.org/10.3969/j.issn.1672-1349.2016.02.009.
Article
Google Scholar
Elbarbry F, Abdelkawy K, Moshirian N, et al. The antihypertensive effect of quercetin in young spontaneously hypertensive rats; role of arachidonic acid metabolism. Int J Mol Sci. 2020;21(18):6554. https://doi.org/10.3390/ijms21186554.
Article
CAS
Google Scholar
Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol. 2021;22(2):142–58. https://doi.org/10.1038/s41580-020-00317-7.
Article
CAS
Google Scholar
Tuomilehto J. Definitions of intermediate hyperglycaemia and progression to type 2 diabetes. Lancet Diabetes Endocrinol. 2019;7(4):243–5. https://doi.org/10.1016/S2213-8587(19)30064-6.
Article
Google Scholar
Chen XQ, Meng TX, Fang ZW, et al. Preliminary study on hypoglycemic effect of total flavonoids from Loranthus parasiticus. Strait Pharm J. 2020;32(07):25–6.
Google Scholar
Meng TX, Yuan XL, Liang F, et al. Hypoglycemic effect of total flavonoids from mistletoe on diabetic mice induced by streptozotocin. J Shanxi Univ Chin Med. 2021;44(06):55–60. https://doi.org/10.13424/j.cnki.jsctcm.2021.06.013.
Article
Google Scholar
Wang N, Zhu Q, Zhou YW, et al. Effects of extract of Herba Taxlli on glucose comsumption in cultured HepG2 cells of human. Chin Arch Tradit Chin Med. 2006;24(03):442–3. https://doi.org/10.13193/j.archtcm.2006.03.60.wangn.028.
Article
Google Scholar
Luo ZP, Li L, Pan WL, et al. Improvement effects of ethanol extract from Taxillus sutchuenensis on blood glucose level, liver and renal complications in type 2 diabetes mellitus model mice and its mechanism. China Pharm. 2019;30(06):796–801. https://doi.org/10.6039/j.issn.1001-0408.2019.06.16.
Article
Google Scholar
Orsolic N, Sirovina D, Odeh D, et al. Efficacy of caffeic acid on diabetes and its complications in the mouse. Molecules. 2021;26(11):3262. https://doi.org/10.3390/molecules26113262.
Article
CAS
Google Scholar
Fujimori K. Avicularin, a plant flavonoid, suppresses lipid accumulation through repression of C/EBP alpha-activated GLUT4-mediated glucose uptake in 3T3-L1 cells. J Agric Food Chem. 2013;61(21):5139–47. https://doi.org/10.1021/jf401154c.
Article
CAS
Google Scholar
Braicu C, Pilecki V, Balacescu O, et al. The relationships between biological activities and structure of flavan-3-ols. Int J Mol Sci. 2011;12(12):9342–53. https://doi.org/10.3390/ijms12129342.
Article
CAS
Google Scholar
Chacko SM, Thambi PT, Kuttan R, et al. Beneficial effects of green tea: a literature review. Chin Med. 2010;5:13. https://doi.org/10.1186/1749-8546-5-13.
Article
CAS
Google Scholar
Diniz L, Elshabrawy HA, Souza M, et al. Catechins: therapeutic perspectives in COVID-19-associated acute kidney injury. Molecules. 2021;26(19):5951. https://doi.org/10.3390/molecules26195951.
Article
CAS
Google Scholar
Khalatbary AR, Khademi E. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr Neurosci. 2020;23(4):281–94. https://doi.org/10.1080/1028415X.2018.1500124.
Article
CAS
Google Scholar
Weon JB, Lee J, Eom MR, et al. The effects of loranthus parasiticus on scopolamine-induced memory impairment in mice. Evid Based Complement Altern Med. 2014;2014: 860180. https://doi.org/10.1155/2014/860180.
Article
Google Scholar
Xia YP, He CH, Chai ZS, et al. Acute toxicity and hepatotoxicity of aqueous extracts of taxilli herba from different hosts in zebrafish model. Chin J Exp Tradit Med Formulas. 2021;27(21):91–7. https://doi.org/10.13422/j.cnki.syfjx.20212125.
Article
CAS
Google Scholar
Liu X, Li LJ, Xu XY, et al. Effects of Morus vulgaris decoction on the growth and development of mouse embryo limb buds and the expression of Tbx2 and BMP-2 genes. J Health Toxicol. 2017;31(02):109–14. https://doi.org/10.16421/j.cnki.1002-3127.2017.02.007.
Article
Google Scholar
Liu MS, Li XH, Zhang H, et al. Effects of Sangjisheng detection on SD pregnant mice and embryonic development. Chin J Eugen Genet. 2013;21(11):105–7. https://doi.org/10.13404/j.cnki.cjbhh.2013.11.056.
Article
Google Scholar
Sun SM. Bei Ji Qian Jin Yao Fang. Beijing: People’s Medical Publishing House; 1997.
Google Scholar
Zhang XC. Yi Xue Zhong Zhong Can Xi Lu.: Tian Jin Xin Hua Yin Shu Ju. Tian Jin; 1909.
Liu JYC. Tai Ping Sheng Hui He Ji Ju Fang. People's Medical Publishing House; 2007.
Li SZ. Bencao gangmu. ZBG. 1995
Yi LW. Shi Yi De Xiao Fang, vol 266. Seoul: Yŏgang Chulpansa; 1987. p. 317–8.
Zheng YH. Effects of Duhuo Jisheng Pills combined with celecoxib on inflammatory factors, endothelial function and knee function in elderly patients with knee osteoarthritis. Chin J Gerontol. 2017;37(10):2513–5. https://doi.org/10.3969/j.issn.1005-9202.2017.10.074.
Article
CAS
Google Scholar
Ji DG, Zhang GQ, Zhang W. Observation of glucosamine hydrochloride combined with Duhuo Jisheng Pill in the treatment of knee osteoarthritis. Chin Foreign Med Res. 2014;12(31):10–2. https://doi.org/10.14033/j.cnki.cfmr.2014.31.085.
Article
Google Scholar
Zeng FB, Cui XR, Yu ZM, et al. Experimental study on the pharmacodynamics of Miniaoning Granules. Chin J Tradit Med Sci Technol. 2002;9(01):15–6.
Google Scholar
Maharajan K, Xia Q, Duan X, et al. Therapeutic importance of Zishen Yutai Pill on the female reproductive health: a review. J Ethnopharmacol. 2021;281: 114523. https://doi.org/10.1016/j.jep.2021.114523.
Article
CAS
Google Scholar
Fan D. Clinical observation on 156 cases of chronic hepatitis B treated by Yigan Pill. Hunan J Tradit Chin Med. 2005;21(05):26–7. https://doi.org/10.16808/j.cnki.issn1003-7705.2005.05.012.
Article
Google Scholar
Du X, Chen XQ, Yang Y, et al. Observation on lipid-lowering effect of Sangge Jiangzhi Pill and Dantian Jiangzhi Pill. Chin J Integr Tradit West Med. 1994;14(01):41–2.
Google Scholar
Yang CR, Hu H, Yan J, et al. Clinical study on Yunkang Granules combined with chorionic gonadotrophin in treatment of habitual abortion. Drugs Clin. 2019;34(09):2717–9. https://doi.org/10.7501/j.issn.1674-5515.2019.09.031
Article
Google Scholar
Zhang ZG, Yang SH, Zheng PP. Clinical observation of Yunkang granules combined with dydrogesterone in the treatment of early threatened abortion. Chin Tradit Pat Med. 2016; 27(23): 3229–31. https://doi.org/10.6039/j.issn.1001-0408.2016.23.21.