Ford AC, Lacy BE, Talley NJ. Irritable bowel syndrome. N Engl J Med. 2017;376:2566–78. https://doi.org/10.1056/NEJMra1607547.
Article
CAS
Google Scholar
Drossman DA, Hasler WL. Rome IV—functional GI disorders: disorders of gut–brain interaction. Gastroenterology. 2016;150:1257–61. https://doi.org/10.1053/j.gastro.2016.03.035.
Article
Google Scholar
Ford AC, Moayyedi P, Lacy BE, et al. American College of Gastroenterology Monograph on the management of irritable bowel syndrome and chronic idiopathic constipation. Am J Gastroenterol. 2014;109:S2–26. https://doi.org/10.1038/ajg.2014.187.
Article
Google Scholar
Lacy BE, Mearin F, Chang L, et al. Bowel disorders. Gastroenterology. 2016;150:1393-1407.e5. https://doi.org/10.1053/j.gastro.2016.02.031.
Article
Google Scholar
Palsson OS, Whitehead W, Törnblom H, et al. Prevalence of rome IV functional bowel disorders among adults in the United States, Canada, and the United Kingdom. Gastroenterology. 2020;158:1262-1273.e3. https://doi.org/10.1053/j.gastro.2019.12.021.
Article
Google Scholar
Canavan C, West J, Card T. Review article: the economic impact of the irritable bowel syndrome. Aliment Pharmacol Ther. 2014;40:1023–34. https://doi.org/10.1111/apt.12938.
Article
CAS
Google Scholar
Chen G, Xie X, Peng C. Treatment of irritable bowel syndrome by CHINESE medicine: a review. Chin J Integr Med. 2021. https://doi.org/10.1007/s11655-021-3521-4.
Article
Google Scholar
Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol. 2012;10:712-721.e4. https://doi.org/10.1016/j.cgh.2012.02.029.
Article
Google Scholar
Zhang L, Duan L, Liu Y, et al. A meta-analysis of the prevalence and risk factors of irritable bowel syndrome in Chinese community. Zhonghua Nei Ke Za Zhi. 2014;53:969–75.
Google Scholar
Zhu J-J, Liu S, Su X-L, et al. Efficacy of Chinese herbal medicine for diarrhea-predominant irritable bowel syndrome: a meta-analysis of randomized, double-blind, placebo-controlled trials. Evid-Based Complement Altern Med. 2016;2016:1–15. https://doi.org/10.1155/2016/4071260.
Article
CAS
Google Scholar
Long Y, Huang Z, Deng Y, et al. Prevalence and risk factors for functional bowel disorders in South China: a population based study using the Rome III criteria. Neurogastroenterol Motil. 2017;29: e12897. https://doi.org/10.1111/nmo.12897.
Article
Google Scholar
Holtmann GJ, Ford AC, Talley NJ. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol Hepatol. 2016;1:133–46. https://doi.org/10.1016/S2468-1253(16)30023-1.
Article
Google Scholar
Wall GC, Bryant GA, Bottenberg MM, et al. Irritable bowel syndrome: a concise review of current treatment concepts. World J Gastroenterol. 2014;20:8796–806. https://doi.org/10.3748/wjg.v20.i27.8796.
Article
Google Scholar
Radovanovic-Dinic B, Tesic-Rajkovic S, Grgov S, et al. Irritable bowel syndrome—from etiopathogenesis to therapy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162:1–9. https://doi.org/10.5507/bp.2017.057.
Article
Google Scholar
Adriani A, Ribaldone DG, Astegiano M, et al. Irritable bowel syndrome: the clinical approach. Panminerva Med. 2018;60:213–22. https://doi.org/10.23736/S0031-0808.18.03541-3.
Article
Google Scholar
Corsetti M, Whorwell P. Novel pharmacological therapies for irritable bowel syndrome. Expert Rev Gastroenterol Hepatol. 2016;10:807–15. https://doi.org/10.1586/17474124.2016.1158099.
Article
CAS
Google Scholar
Alammar N, Stein E. Irritable bowel syndrome: what treatments really work. Med Clin North Am. 2019;103:137–52. https://doi.org/10.1016/j.mcna.2018.08.006.
Article
Google Scholar
Surdea-Blaga T, Baban A, Nedelcu L, Dumitrascu DL. Psychological Interventions for Irritable Bowel Syndrome. J Gastrointestin Liver Dis. 2016;25:359–66. https://doi.org/10.15403/jgld.2014.1121.253.ibs.
Article
Google Scholar
Malysz J, Farraway LA, Christen M-O, Huizinga JD. Pinaverium acts as L-type calcium channel blocker on smooth muscle of colon. Can J Physiol Pharmacol. 1997;75:969–75. https://doi.org/10.1139/y97-117.
Article
CAS
Google Scholar
Baumgartner A, Drack E, Halter F, Scheurer U. Effects of pinaverium bromide and verapamil on the motility of the rat isolated colon. Br J Pharmacol. 1985;86:89–94. https://doi.org/10.1111/j.1476-5381.1985.tb09438.x.
Article
CAS
Google Scholar
Quigley EMM, Fried M, Gwee K-A, et al. World Gastroenterology Organisation Global Guidelines Irritable Bowel Syndrome: a global perspective update September 2015. J Clin Gastroenterol. 2016;50:704–13. https://doi.org/10.1097/MCG.0000000000000653.
Article
Google Scholar
Leung WK, Wu JCY, Liang SM, et al. Treatment of diarrhea-predominant irritable bowel syndrome with traditional Chinese herbal medicine: a randomized placebo-controlled trial. Am J Gastroenterol. 2006;101:1574–80. https://doi.org/10.1111/j.1572-0241.2006.00576.x.
Article
Google Scholar
Teschke R, Wolff A, Frenzel C, et al. Herbal traditional Chinese medicine and its evidence base in gastrointestinal disorders. World J Gastroenterol. 2015;21:4466–90. https://doi.org/10.3748/wjg.v21.i15.4466.
Article
Google Scholar
Bi Z, Zheng Y, Yuan J, Bian Z. The efficacy and potential mechanisms of Chinese herbal medicine on irritable bowel syndrome. CPD. 2018. https://doi.org/10.2174/1381612823666170822101606.
Article
Google Scholar
Xu G-Z, Xue Y, Wei S-Q, et al. Valproate reverses stress-induced somatic hyperalgesia and visceral hypersensitivity by up-regulating spinal 5-HT2C receptor expression in female rats. Neuropharmacology. 2020;165: 107926. https://doi.org/10.1016/j.neuropharm.2019.107926.
Article
CAS
Google Scholar
Yang X. Syndrome differentiation and treatment of Taiyang disease in Shanghan Lun. J Chin Integr Med. 2009;7:171–4. https://doi.org/10.3736/jcim20090215.
Article
Google Scholar
Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics. 2006;6:4716–23. https://doi.org/10.1002/pmic.200600106.
Article
CAS
Google Scholar
Xuan Q, Ouyang Y, Wang Y, et al. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects. Adv Sci. 2020;7:2001714. https://doi.org/10.1002/advs.202001714.
Article
CAS
Google Scholar
Camilleri M. Irritable bowel syndrome: straightening the road from the Rome criteria. Neurogastroenterol Motil. 2020. https://doi.org/10.1111/nmo.13957.
Article
Google Scholar
Xiaoyu Zheng, et al (2002) Clinical research of new Chinese medicine and the consensus of TCM Diagnosis. China medical scinece press
Spleen and Stomach diseases branch of Chinese Society of Traditional Chinese Medicine. Consensus of experts on diagnosis and treatment of irritable bowel syndrome in Traditional Chinese Medicine. J Tradit Chin Med. 2017;58(18):1614–1620.
Deng Y, Yao H, Chen W, et al. Profiling of polar urine metabolite extracts from Chinese colorectal cancer patients to screen for potential diagnostic and adverse-effect biomarkers. J Cancer. 2020;11:6925–38. https://doi.org/10.7150/jca.47631.
Article
CAS
Google Scholar
Gika HG, Theodoridis GA, Wingate JE, Wilson ID. Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. J Proteome Res. 2007;6:3291–303. https://doi.org/10.1021/pr070183p.
Article
CAS
Google Scholar
Tan Y, Yin P, Tang L, et al. Metabolomics study of stepwise hepatocarcinogenesis from the model rats to patients: potential biomarkers effective for small hepatocellular carcinoma diagnosis. Mol Cell Proteomics. 2012;11(M111): 010694. https://doi.org/10.1074/mcp.M111.010694.
Article
CAS
Google Scholar
Li M, Chen J, Deng Y, et al (2021) Risk prediction models based on hematological/body parameters for chemotherapy-induced adverse effects in Chinese colorectal cancer patients. Support Care Cancer 29:7931–7947. https://doi.org/10.1007/s00520-021-06337-z.
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47. https://doi.org/10.1093/nar/gkv007.
Article
CAS
Google Scholar
Li M, Chen J, Liu S, et al. Spermine-related DNA hypermethylation and elevated expression of genes for collagen formation are susceptible factors for chemotherapy-induced hand-foot syndrome in Chinese colorectal cancer patients. Front Pharmacol. 2021;12: 746910. https://doi.org/10.3389/fphar.2021.746910.
Article
CAS
Google Scholar
Longstreth GF, Thompson WG, Chey WD et al (2006) Functional Bowel Disorders. Gastroenterology 130:1480–1491. https://doi.org/10.1053/j.gastro.2005.11.061.
Article
Google Scholar
Camilleri M. Peripheral mechanisms in irritable bowel syndrome. N Engl J Med. 2012;367:1626–35. https://doi.org/10.1056/NEJMra1207068.
Article
CAS
Google Scholar
Christen MO. Action of pinaverium bromide, a calcium-antagonist, on gastrointestinal motility disorders. General Pharmacol Vasc Syst. 1990;21:821–5. https://doi.org/10.1016/0306-3623(90)90439-S.
Article
CAS
Google Scholar
Maffei ME. 5-Hydroxytryptophan (5-HTP): natural occurrence, analysis, biosynthesis, biotechnology. Physiol Toxicol IJMS. 2020;22:181. https://doi.org/10.3390/ijms22010181.
Article
CAS
Google Scholar
de Herder WW. Biochemistry of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab. 2007;21:33–41. https://doi.org/10.1016/j.beem.2006.12.002.
Article
CAS
Google Scholar
Gaggi R, Dall’Olio R, Roncada P, Gianni AM. Effects of isradipine and darodipine on serotonergic system of the rat brain. Pharmacol Biochem Behav. 1995;51:183–7. https://doi.org/10.1016/0091-3057(94)00389-z.
Article
CAS
Google Scholar
Firk C, Markus CR. Review: serotonin by stress interaction: a susceptibility factor for the development of depression? J Psychopharmacol. 2007;21:538–44. https://doi.org/10.1177/0269881106075588.
Article
CAS
Google Scholar
Crowell MD, Wessinger SB. 5-HT and the brain-gut axis: opportunities for pharmacologic intervention. Expert Opin Investig Drugs. 2007;16:761–5. https://doi.org/10.1517/13543784.16.6.761.
Article
CAS
Google Scholar
Alden N, Raju R, McElearney K, et al. Using metabolomics to identify cell line-independent indicators of growth inhibition for Chinese hamster ovary cell-based bioprocesses. Metabolites. 2020;10:E199. https://doi.org/10.3390/metabo10050199.
Article
CAS
Google Scholar
Jinsmaa Y, Cooney A, Sullivan P, et al. The serotonin aldehyde, 5-HIAL, oligomerizes alpha-synuclein. Neurosci Lett. 2015;590:134–7. https://doi.org/10.1016/j.neulet.2015.01.064.
Article
CAS
Google Scholar
Tanaka H, Sirich TL, Plummer NS, et al. An enlarged profile of uremic solutes. PLoS ONE. 2015;10: e0135657. https://doi.org/10.1371/journal.pone.0135657.
Article
CAS
Google Scholar
Toyohara T, Akiyama Y, Suzuki T, et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010;33:944–52. https://doi.org/10.1038/hr.2010.113.
Article
Google Scholar
Pavlova T, Vidova V, Bienertova-Vasku J, et al. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal Chim Acta. 2017;987:72–80. https://doi.org/10.1016/j.aca.2017.08.022.
Article
CAS
Google Scholar
Vanholder R, Baurmeister U, Brunet P, et al. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008;19:863–70. https://doi.org/10.1681/ASN.2007121377
Article
Google Scholar
Ruddell RG, Mann DA, Ramm GA. The function of serotonin within the liver. J Hepatol. 2008;48:666–75. https://doi.org/10.1016/j.jhep.2008.01.006.
Article
CAS
Google Scholar
Thijssen AY, Mujagic Z, Jonkers DMAE, et al. Alterations in serotonin metabolism in the irritable bowel syndrome. Aliment Pharmacol Ther. 2016;43:272–82. https://doi.org/10.1111/apt.13459.
Article
CAS
Google Scholar
Witte MB, Barbul A. Arginine physiology and its implication for wound healing. Wound Repair Regen. 2003;11:419–23. https://doi.org/10.1046/j.1524-475X.2003.11605.x.
Article
Google Scholar
Oanca G, Stare J, Vianello R, Mavri J. Multiscale simulation of monoamine oxidase catalyzed decomposition of phenylethylamine analogs. Eur J Pharmacol. 2017;817:46–50. https://doi.org/10.1016/j.ejphar.2017.05.061.
Article
CAS
Google Scholar
Mulinari S. Monoamine theories of depression: historical impact on biomedical research. J Hist Neurosci. 2012;21:366–92. https://doi.org/10.1080/0964704X.2011.623917.
Article
Google Scholar
Violante S, Achetib N, van Roermund CWT, et al. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J. 2019;33:4355–64. https://doi.org/10.1096/fj.201801498R.
Article
CAS
Google Scholar
Zhai L, Huang C, Ning Z, et al. Phenethylamine-producing gut bacteria induces diarrhea-predominant irritable bowel syndrome by increasing serotonin biosynthesis. Microbiology. 2022. http://biorxiv.org/lookup/doi/10.1101/2022.03.05.483096.
Su GY, Yang JY, Wang F, et al. Antidepressant-like effects of Xiaochaihutang in a rat model of chronic unpredictable mild stress. J Ethnopharmacol. 2014;152:217–26. https://doi.org/10.1016/j.jep.2014.01.006.
Article
CAS
Google Scholar
Kumer SC, Mockus SM, Rucker PJ, Vrana KE. Amino-terminal analysis of tryptophan hydroxylase: protein kinase phosphorylation occurs at serine-58. J Neurochem. 1997;69:1738–45. https://doi.org/10.1046/j.1471-4159.1997.69041738.x.
Article
CAS
Google Scholar
Duchemin AM, Berry MD, Neff NH, Hadjiconstantinou M. Phosphorylation and activation of brain aromatic L-amino acid decarboxylase by cyclic AMP-dependent protein kinase. J Neurochem. 2000;75:725–31. https://doi.org/10.1046/j.1471-4159.2000.0750725.x.
Article
CAS
Google Scholar
O’Mahony SM, Clarke G, Borre YE, et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48. https://doi.org/10.1016/j.bbr.2014.07.027.
Article
CAS
Google Scholar
Fortin G. l-Carnitine and intestinal inflammation. In: Vitamins and hormones. Elsevier, Amsterdam; 2011, pp 353–366
Li C, Zhang H, Li X. The mechanism of traditional Chinese medicine for the treatment of obesity. Diabetes Metab Syndr Obes. 2020;13:3371–81. https://doi.org/10.2147/DMSO.S274534.
Article
Google Scholar
Wang Z-Y, Jiang Z-M, Xiao P-T, et al. The mechanisms of baicalin ameliorate obesity and hyperlipidemia through a network pharmacology approach. Eur J Pharmacol. 2020;878: 173103. https://doi.org/10.1016/j.ejphar.2020.173103.
Article
CAS
Google Scholar
Adachi T, Fukami K, Yamagishi S-I, et al. Decreased serum carnitine is independently correlated with increased tissue accumulation levels of advanced glycation end products in haemodialysis patients: correlation between carnitine and tissue AGE. Nephrology. 2012;17:689–94. https://doi.org/10.1111/j.1440-1797.2012.01642.x.
Article
CAS
Google Scholar
Tashiro K, Kaida Y, Yamagishi S, et al. L-Carnitine supplementation improves self-rating depression scale scores in uremic male patients undergoing hemodialysis. LDDD. 2017. https://doi.org/10.2174/1570180814666170216102632.
Article
Google Scholar
Cruciani RA, Dvorkin E, Homel P, et al. l-Carnitine supplementation for the treatment of fatigue and depressed mood in cancer patients with carnitine deficiency: a preliminary analysis. Ann N Y Acad Sci. 2004;1033:168–76. https://doi.org/10.1196/annals.1320.016.
Article
CAS
Google Scholar
Chen Y, Jiang Y, Liao L, et al. Inhibition of 4NQO-induced oral carcinogenesis by dietary oyster shell calcium. Integr Cancer Ther. 2016;15:96–101. https://doi.org/10.1177/1534735415596572.
Article
CAS
Google Scholar
Fang FE, Ng BT, Shaw CP, Wong NSR. Recent progress in medicinal investigations on trichosanthin and other ribosome inactivating proteins from the plant genus Trichosanthes. CMC. 2011;18:4410–7. https://doi.org/10.2174/092986711797200499.
Article
CAS
Google Scholar
Zhu W, Jin Z, Yu J, et al. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype. Int Immunopharmacol. 2016;35:119–26. https://doi.org/10.1016/j.intimp.2016.03.030.
Article
CAS
Google Scholar
Grobben Y, Willemsen-Seegers N, Uitdehaag JCM, et al. High-throughput fluorescence-based activity assay for arginase-1. SLAS Discov. 2020;25:1018–25. https://doi.org/10.1177/2472555220919340.
Article
CAS
Google Scholar
Liang S, Deng X, Lei L, et al. The comparative study of the therapeutic effects and mechanism of baicalin, baicalein, and their combination on ulcerative colitis rat. Front Pharmacol. 2019;10:1466. https://doi.org/10.3389/fphar.2019.01466.
Article
CAS
Google Scholar
Zhang C-Y-Y, Zeng M-J, Zhou L-P, et al. Baicalin exerts neuroprotective effects via inhibiting activation of GSK3β/NF-κB/NLRP3 signal pathway in a rat model of depression. Int Immunopharmacol. 2018;64:175–82. https://doi.org/10.1016/j.intimp.2018.09.001.
Article
CAS
Google Scholar
Ye Y, Huang C, Jiang L, et al. Huanglian-Jie-Du-Tang extract protects against chronic brain injury after focal cerebral ischemia via hypoxia-inducible-factor-1α-regulated vascular endothelial growth factor signaling in mice. Biol Pharm Bull. 2012;35:355–61. https://doi.org/10.1248/bpb.35.355.
Article
CAS
Google Scholar
Li L, Cui H, Li T, et al. Synergistic effect of berberine-based Chinese medicine assembled nanostructures on diarrhea-predominant irritable bowel syndrome in vivo. Front Pharmacol. 2020;11:1210. https://doi.org/10.3389/fphar.2020.01210.
Article
CAS
Google Scholar
Halliwell B, Cheah IK, Tang RMY. Ergothioneine—a diet-derived antioxidant with therapeutic potential. FEBS Lett. 2018;592:3357–66. https://doi.org/10.1002/1873-3468.13123.
Article
CAS
Google Scholar
Cheah IK, Feng L, Tang RMY, et al. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem Biophys Res Commun. 2016;478:162–7. https://doi.org/10.1016/j.bbrc.2016.07.074.
Article
CAS
Google Scholar
Fond G, Loundou A, Hamdani N, et al. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci. 2014;264:651–60. https://doi.org/10.1007/s00406-014-0502-z.
Article
Google Scholar
Shao Y-Y, Guo Y-T, Gao J, et al. Shaoyao-Gancao Decoction relieves visceral hyperalgesia in TNBS-Induced postinflammatory irritable bowel syndrome via inactivating transient receptor potential vanilloid type 1 and reducing serotonin synthesis. Evid-Based Complement Altern Med. 2020;2020:1–12. https://doi.org/10.1155/2020/7830280.
Article
Google Scholar