Ye JX, Wei W, Quan LH, Liu CY, Chang Q, Liao YH. An LC-MS/MS method for the simultaneous determination of chlorogenic acid, forsythiaside A and baicalin in rat plasma and its application to pharmacokinetic study of Shuang-huang-lian in rats. J Pharm Biomed Anal. 2010;52:625–30.
Article
CAS
PubMed
Google Scholar
Han J, Ye M, Guo H, Yang M, Wang BR, Guo DA. Analysis of multiple constituents in a Chinese herbal preparation Shuang-Huang-Lian oral liquid by HPLC-DAD-ESI-MSn. J Pharm Biomed Anal. 2007;44:430–8.
Article
CAS
PubMed
Google Scholar
Zhang H, Chen Q, Zhou W, Gao S, Lin H, Ye S, et al. Chinese medicine injection shuanghuanglian for treatment of acute upper respiratory tract infection: a systematic review of randomized controlled trials. Evid Based Complement Altern Med. 2013;987326:1–7.
Google Scholar
Ni LJ, Zhang LG, Hou J, Shi WZ, Guo ML. A strategy for evaluating antipyretic efficacy of Chinese herbal medicines based on UV spectra fingerprints. J Ethnopharmacol. 2009;124:79–86.
Article
CAS
PubMed
Google Scholar
Liu C, Douglas RM. Chinese herbal medicines in the treatment of acute respiratory infections: a review of randomised and controlled clinical trials. Med J Aust. 1998;169:579–82.
Article
CAS
PubMed
Google Scholar
Chen X, Howard OM, Yang X, Wang L, Oppenheim JJ, Krakauer T. Effects of Shuanghuanglian and Qingkailing, two multi-components of traditional Chinese medicinal preparations, on human leukocyte function. Life Sci. 2002;70:2897–913.
Article
CAS
PubMed
Google Scholar
Song ZJ, Johansen HK, Moser C, Faber V, Kharazmi A, Rygaard J, et al. Effects of Radix Angelicae sinensis and shuanghuanglian on a rat model of chronic Pseudomonas aeruginosa pneumonia. Chin Med Sci J. 2000;15:83–8.
CAS
PubMed
Google Scholar
Wang YH, Xu KJ, Jiang WS. Experimental and clinical study of shuanghuanglian aerosol in treating acute respiratory tract infection. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1995;15:347–50.
CAS
PubMed
Google Scholar
Zhang FX, Li M, Yao ZH, Li C, Qiao LR, Shen XY, et al. A target and nontarget strategy for identification or characterization of the chemical ingredients in Chinese herb preparation Shuang-Huang-Lian oral liquid by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Biomed Chromatogr. 2018;32: e4110.
Article
CAS
Google Scholar
Kong XT, Fang HT, Jiang GQ, Zhai SZ, O’Connell DL, Brewster DR. Treatment of acute bronchiolitis with Chinese herbs. Arch Dis Child. 1993;68:468–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Hakamata H, Kusu F, Wang Z, Gao H, Kotani A. Simultaneous determination of various bioactive redox components in Shuang-Huang-Lian preparations using a novel three-channel isocratic elution liquid chromatography with electrochemical detection system. J Pharm Biomed Anal. 2014;95:93–101.
Article
CAS
PubMed
Google Scholar
Yan GL, Zhang AH, Sun H, Han Y, Shi H, Zhou Y, et al. An effective method for determining the ingredients of Shuanghuanglian formula in blood samples using high-resolution LC-MS coupled with background subtraction and a multiple data processing approach. J Sep Sci. 2013;36:3191–9.
Article
CAS
PubMed
Google Scholar
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, vol. I. Beijing: Chinese Pharmacopoeia Commission; 2015.
Google Scholar
Ye J, Song X, Liu Z, Zhao X, Geng L, Bi K, et al. Development of an LC-MS method for determination of three active constituents of Shuang-huang-lian injection in rat plasma and its application to the drug interaction study of Shuang-huang-lian freeze-dried powder combined with levofloxacin injection. J Chromatogr B Anal Technol Biomed Life Sci. 2012;898:130–5.
Article
CAS
Google Scholar
Chen J, Li BQ, Zhai HL, Lü WJ, Zhang XY. A practical application of wavelet moment method on the quantitative analysis of Shuanghuanglian oral liquid based on three-dimensional fingerprint spectra. J Chromatogr A. 2014;1352:55–61.
Article
CAS
PubMed
Google Scholar
Luan L, Wang G, Lin R. HPLC and chemometrics for the quality consistency evaluation of Shuanghuanglian injection. J Chromatogr Sci. 2014;52:707–12.
Article
CAS
PubMed
Google Scholar
Zhou XJ, Chen J, Li YD, Jin L, Shi YP. Holistic analysis of seven active ingredients by micellar electrokinetic chromatography from three medicinal herbs composing Shuanghuanglian. J Chromatogr Sci. 2015;53:1786–93.
Article
CAS
PubMed
Google Scholar
Zhang TB, Yue RQ, Xu J, Ho HM, Ma DL, Leung CH, et al. Comprehensive quantitative analysis of Shuang-Huang-Lian oral liquid using UHPLC-Q-TOF-MS and HPLC-ELSD. J Pharm Biomed Anal. 2015;102:1–8.
Article
CAS
PubMed
Google Scholar
Wang H, Zhang X, Wang D, Sun H, Lan Y, Jiang H, et al. An on-line analytical approach for detecting haptens in Shuang-huang-lian powder injection. J Chromatogr A. 2017;1513:126–39.
Article
CAS
PubMed
Google Scholar
Sun H, Liu M, Lin Z, Jiang H, Niu Y, Wang H, et al. Comprehensive Identification of 125 multifarious constituents in Shuang-huang-lian powder injection by HPLC-DAD-ESI-IT-TOF-MS. J Pharm Biomed Anal. 2015;115:86–106.
Article
CAS
PubMed
Google Scholar
Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4:682–90.
Article
CAS
PubMed
Google Scholar
Zhang X, Gu J, Cao L, Li N, Ma Y, Su Z, et al. Network pharmacology study on the mechanism of traditional Chinese medicine for upper respiratory tract infection. Mol Biosyst. 2014;10:2517–25.
Article
CAS
PubMed
Google Scholar
Kind T, Fiehn O. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinform. 2007;8:105.
Article
CAS
Google Scholar
Traditional Chinese medicine integrated database. www.megabionet.org/tcmid/. Accessed 09 Jan 2022.
Traditional Chinese medicine systems pharmacology database and analysis platform. https://tcmsp-e.com/. Accessed 09 Jan 2022.
Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13.
Article
PubMed
PubMed Central
CAS
Google Scholar
SIRIUS. https://bio.informatik.uni-jena.de/software/sirius/. Accessed 05 Apr 2022.
MetaboAnalyst 4.0. https://www.metaboanalyst.ca/. Accessed 09 Jan 2022.
Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banerjee P, Ghosh S, Dutta M, Subramani E, Khalpada J, Roychoudhury S, et al. Identification of key contributory factors responsible for vascular dysfunction in idiopathic recurrent spontaneous miscarriage. PLoS ONE. 2013;8: e80940.
Article
PubMed
PubMed Central
CAS
Google Scholar
Farrés M, Platikanov S, Tsakovski S, Tauler R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J Chemom. 2015;29:528–36.
Article
CAS
Google Scholar
Hill AW, Mortishire-Smith RJ. Automated assignment of high-resolution collisionally activated dissociation mass spectra using a systematic bond disconnection approach. Rapid Commun Mass Spectrom. 2005;19:3111–8.
Article
CAS
Google Scholar
Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods. 2019;16:299–302.
Article
PubMed
CAS
Google Scholar
Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci USA. 2015;112:12580–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gika HG, Theodoridis GA, Wingate JE, Wilson ID. Within day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. J Proteome Res. 2007;6:3291–303.
Article
CAS
PubMed
Google Scholar
Yuk J, Patel DN, Isaac G, Smith K, Wrona M, Olivos HJ, et al. Chemical profiling of ginseng species and ginseng herbal products using UPLC/QTOF-MS. J Braz Chem Soc. 2016;27:1476–83.
CAS
Google Scholar
Fuentes E, Caballero J, Alarcón M, Rojas A, Palomo I. Chlorogenic acid inhibits human platelet activation and thrombus formation. PLoS ONE. 2014;9: e90699.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lou Z, Wang H, Zhu S, Ma C, Wang Z. Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci. 2011;76:M398–403.
Article
CAS
PubMed
Google Scholar
Hwang YJ, Lee EJ, Kim HR, Hwang KA. Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways. BMB Rep. 2013;46:611–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Su H, Wan H, Qin Q, Wu X, Kong X, et al. Forsythoside A exerts antipyretic effect on yeast-induced pyrexia mice via inhibiting transient receptor potential vanilloid 1 function. Int J Biol Sci. 2017;13:65–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Liu Y, Wu T, Jin Y, Cheng J, Wan C, et al. The antiviral effect of baicalin on enterovirus 71 in vitro. Viruses. 2015;7:4756–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, et al. Phillyrin attenuates high glucose-induced lipid accumulation in human HepG2 hepatocytes through the activation of LKB1/AMP-activated protein kinase-dependent signalling. Food Chem. 2013;136:415–25.
Article
CAS
PubMed
Google Scholar
Vijayalakshmi A, Sindhu G. Data on efficacy of umbelliferone on glycoconjugates and immunological marker in 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis. Data Brief. 2017;15:216–21.
Article
PubMed
PubMed Central
Google Scholar
Meriga B, Parim B, Chunduri VR, Naik RR, Nemani H, Suresh P, et al. Antiobesity potential of piperonal: promising modulation of body composition, lipid profiles and obesogenic marker expression in HFD-induced obese rats. Nutr Metab. 2017;14:72.
Article
CAS
Google Scholar
Gandhi GR, Ignacimuthu S, Paulraj MG, Sasikumar P. Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanum torvum Swartz. fruit in streptozotocin induced diabetic rats. Eur J Pharmacol. 2011;670:623–31.
Article
CAS
PubMed
Google Scholar
Echeverri F, Torres F, Quiñones W, Cardona G, Archbold R, Roldan J, et al. Danielone, a phytoalexin from papaya fruit. Phytochemistry. 1997;44:255–6.
Article
CAS
PubMed
Google Scholar
Ueda S, Iwahashi Y, Tokuda H. Production of anti-tumor-promoting iridoid glucosides in Genipa americana and its cell cultures. J Nat Prod. 1991;54:1677–80.
Article
CAS
PubMed
Google Scholar
Sasikumar K, Ghosh AR, Dusthackeer A. Antimycobacterial potentials of quercetin and rutin against Mycobacterium tuberculosis H37Rv. 3 Biotech. 2018;8:427.
Article
PubMed
PubMed Central
Google Scholar
Heitz A, Carnat A, Fraisse D, Carnat AP, Lamaison JL. Luteolin 3′-glucuronide, the major flavonoid from Melissa officinalis subsp. officinalis. Fitoterapia. 2000;71:201–2.
Article
CAS
PubMed
Google Scholar
Singh J, Qayum A, Singh RD, Koul M, Kaul A, Satti NK, et al. Immunostimulatory activity of plumieride an iridoid in augmenting immune system by targeting Th-1 pathway in balb/c mice. Int Immunopharmacol. 2017;48:203–10.
Article
CAS
PubMed
Google Scholar
Xiang Y, Ye W, Huang C, Lou B, Zhang J, Yu D, et al. Brusatol inhibits growth and induces apoptosis in pancreatic cancer cells via JNK/p38 MAPK/NF-κb/Stat3/Bcl-2 signaling pathway. Biochem Biophys Res Commun. 2017;487:820–6.
Article
CAS
PubMed
Google Scholar
Ganesan K, Xu B. Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Ann N Y Acad Sci. 2017;1401:102–13.
Article
CAS
PubMed
Google Scholar
Wang D, Zhang X, Li D, Hao W, Meng F, et al. Kaempferide protects against myocardial ischemia/reperfusion injury through activation of the PI3K/Akt/GSK-3β pathway. Mediat Inflamm. 2017;5278218:1–11.
Google Scholar
Cathcart MC, Useckaite Z, Drakeford C, Semik V, Lysaght J, Gately K, et al. Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo. BMC Cancer. 2016;16:707.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu X, Liu P, Zhang H, Li Y, Salmani JM, Wang F, et al. Wogonin as a targeted therapeutic agent for EBV (+) lymphoma cells involved in LMP1/NF-κB/miR-155/PU.1 pathway. BMC Cancer. 2017;17:147.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bui TT, Piao CH, Song CH, Chai OH. Skullcapflavone II attenuates ovalbumin-induced allergic rhinitis through the blocking of Th2 cytokine production and mast cell histamine release. Int Immunopharmacol. 2017;52:77–84.
Article
CAS
PubMed
Google Scholar
He H, Silo-Suh LA, Handelsman J, Clardy J. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 1994;35:2499–502.
Article
CAS
Google Scholar