Skip to main content

Medicinal plants utilized in the management of epilepsy in Ethiopia: ethnobotany, pharmacology and phytochemistry

Abstract

Epilepsy is a common central nervous system (CNS) disorder that affects 50 million people worldwide. Patients with status epilepticus (SE) suffer from devastating comorbidities and a high incidence of mortalities. Antiepileptic drugs (AEDs) are the mainstream treatment options for the symptomatic relief of epilepsy. The incidence of refractory epilepsy and the dose-dependent neurotoxicity of AEDs such as fatigue, cognitive impairment, dizziness, attention-deficit behavior, and other side effects are the major bottlenecks in epilepsy treatment. In low- and middle-income countries (LMICs), epilepsy patients failed to adhere to the AEDs regimens and consider other options such as complementary and alternative medicines (CAMs) to relieve pain due to status epilepticus (SE). Plant-based CAMs are widely employed for the treatment of epilepsy across the globe including Ethiopia. The current review documented around 96 plant species (PS) that are often used for the treatment of epilepsy in Ethiopia. It also described the in vivo anticonvulsant activities and toxicity profiles of the antiepileptic medicinal plants (MPs). Moreover, the phytochemical constituents of MPs with profound anticonvulsant effects were also assessed. The result reiterated that a lot has to be done to show the association between herbal-based epilepsy treatment and in vivo pharmacological activities of MPs regarding their mechanism of action (MOA), toxicity profiles, and bioactive constituents so that they can advance into the clinics and serve as a treatment option for epilepsy.

Introduction

Epilepsy is a common central nervous system (CNS) disorder and the fourth-largest cause of disease burden worldwide [1]. It is mainly characterized by recurrent, unprovoked seizures, which may trigger anxiety, depression, cognitive decline, schizophrenia, autism that can deteriorate the quality of life (QOL) and increase the incidence of mortality in patients [2, 3]. An imbalance instigated by inhibition of the excitatory γ-aminobutyric acid (GABA)-mediated neurotransmission and activation of inhibitory glutamatergic neurotransmission within the brain including hippocampal, neocortical, cortico-thalamic, and basal ganglia network is often implicated in the pathogenesis of epileptic seizures (ES) [4]. Epilepsy can emanate from a genetic predisposition of the brain to generate seizures or may be caused by brain damage due to tumor, injury, stroke, infection, etc. [5] that can elicit a wide array of abnormalities resulting in seizure generation [6]. According to WHO 2019 factsheet, approximately 50 million people around the globe are suffering from unpleasant symptoms and comorbidities resulting from ES [7]. It is reported that almost 80% of epilepsy cases are found in low—and middle-income countries (LMICs) [4] due to lack of sufficient antiepileptic drugs (AEDs), high cost if any AEDs available, and undesirable outcomes of the existing AEDs [8]. In the case of Ethiopia, epilepsy is one of the 20 leading causes of mortality, and 5.2 out of 1000 people are prone to ES in their lifetime [9, 10]. In general, epilepsy has substantial economic implications, predominantly in Africa, as it triggered a great burden on the underprivileged healthcare system of poor nations [11] as well as on patients owing to the epilepsy-bound poor QOL, stigma, and discrimination in patients and relatives [12] that could ominously increase healthcare expenditure and diminish overall productivity [10].

Modulating the activity of GABAergic, glutamatergic, purinergic neurotransmissions, cholinergic pathways and ATPases is a viable option for the treatment of epilepsy [13]. Attempts have been made to exploit the aforementioned neurotransmission pathways and enzymes implicated in epileptogenesis for the design of novel chemical agents to ameliorate the neurological deficits responsible for the progression of epilepsy. Thus far, more than 30 AEDs have been approved for clinical use [14]. However, the AEDs succeeded only in the symptomatic relief of epilepsy in patients without significantly correcting the underlying biochemical aberrations involved in epileptogenesis [15]. Currently, the treatment of epilepsy has mainly relied on such AEDs which can make patients free of seizures upon proper treatments regimens. Although the existing AEDs are effective in the suppression of seizures in the vast majority of epilepsy patients, 30% of them (15% of children and 34% adults) developed resistance towards AEDs, consequently, nonresponsive towards AEDs [16, 17]. Moreover, the dose-dependent neurotoxicity of AEDs such as fatigue, cognitive impairment, dizziness, attention-deficit behavior, and other side effects are the major bottlenecks in epilepsy treatment [8]. Patients with refractory ES are at increased risk of mortality and morbidity. Adjuvant therapies and AEDs along with ketogenic diet supplements are employed for the treatment of refractory ES [17]. Patients with untreated and/or refractory epilepsy are often desperate to seek nonconventional treatments including but not limited to complementary and alternative medicines (CAMs) [18]. The unaffordable price of newer AEDs and the wider treatment gaps have inspired researchers to focus on plants in the search for safe and effective drugs for the treatment of ES.

Current trends in the treatment of epileptic seizures

AEDs are pretty effective in the treatment of epilepsy if patients properly comply with treatment regimens. However, they are overpriced and seldom possess devastating and inevitable side effects resulting in poor patient compliance [19]. Treatment compliance or adherence is a major factor that can dictate the outcomes of AEDs in controlling the incidence of seizure attacks [20]. There is ample evidence suggesting the presence of a huge treatment gap among epilepsy patients in LMICs ranging from 25 to 100% [21]. In Africa, epilepsy is associated with fear, misunderstanding, witchcraft, discrimination and social stigmatization of patients and their families that can be considered as a driving force for the observed huge treatment gaps due to failure in several intervention mechanisms employed and persistent antiepileptic medications non-adherences (AEMNAs) [22]. Epileptic patients experiencing AEMNAs are more prone to have suboptimal treatment outcomes, recurrent seizure attacks, intermittent hospital admissions, increased healthcare expenditure, lowered level of productivity, and thereby deteriorated QOL [23]. For instance, in Ethiopia, the prevalence of AEMNAs was found to be in the range of 21.8–68%. Poor healthcare system and medical services, lack of medication access, economic constraints, antiepileptic medication side effects, and poor seizure control status are among the factors which significantly contributed to the high burden of AEMNAs in Ethiopia [24]. Moreover, the association of epilepsy with spiritual and predestined fate as well as the presence of different cultural and spiritual beliefs with potential impacts to enforce people to prefer CAMs for the treatment of “spiritual disease” such as epilepsy [25] have significantly contributed to the high incidence of AEMNAs in different parts of Ethiopia. Overall, AEMNAs resulted in treatment failure which in turn triggered devastating social consequences, life-threatening comorbidities, employment restriction, physical injuries, and increased mortality [23]. For instance, in sub-Saharan Africa, untreated ES are the common causes of death with status epilepticus (SE), drowning, falls, burns, and sudden death contributing to epilepsy-associated mortality [26]. A study conducted on 119 patients in Ethiopia revealed that about 58% of epileptic patients who acquired generalized tonic–clonic seizures (GTCS) at a baseline evaluation with a frequency of ≤ 8 times, 23.3% of them died [27]. Another study revealed that among 316 persons with epilepsy, 20 (6.3%) died within 2 year period mostly due to SE and burn [28]. Accordingly, improving the patient compliance towards the existing AEDs through novel intervention approaches and bringing CAMs, especially antiepileptic herbal formulation, into modern pharmacy shelves is an option in the long term to tackle seizure-related morbidity and mortality.

Importance of complementary and alternative medicine in Ethiopia

According to National Center for Complementary and Alternative Medicines (NCAM), CAMs are defined as a traditional healthcare system comprised of biological, spiritual, alternative, physical, and energy therapies [18]. A biological form of CAM that depends on natural products is commonly sought for the treatment of different diseases worldwide [29]. It uses medicinal herbs, medicinal animals, dietary supplements, antioxidants, minerals, vitamins, etc. alone or in combination to diagnose, prevent and treat different ailments [30]. Traditional medicines (TMs) of plant origin have become an integral part of the healthcare system of developed and developing countries [31] where 60% of the population entirely depend on them to relieve different types of ailments. Medicinal plants (MPs) have played a vital role in the treatment of human and livestock ailments since immemorial [32] partly due to the presence of bioactive secondary metabolites. Africa is the home of massive biodiversity rich in different types of animals and PS. The continent is likely to have approximately 45,000 PS of which 5000 species have medicinal importance [33]. Ethiopia is among the most diverse country located in East Africa containing approximately 6500–7000 PS (12% of them are endemic) in its flora [34]. It is also endowed with several languages, diverse cultures, and beliefs which are the driving force for the existence of traditional medical system plurality in the country [35]. Ethiopians have been using MPs and medicinal animals for the prevention, diagnosis, and treatment of different ailments since immemorial [36,37,38,39,40]. The healthcare demand of 80% of the people and 90% livestock in the country largely hinged on different PS [35]. Nearly 800 MPs are constantly employed to treat around 300 physical and mental diseases in the traditional healthcare system of Ethiopia [41]. The economic implication of MPs is noteworthy in Ethiopia. It is estimated that approximately 56,000 tons of wild MPs were collected per annum, which can potentially inject two billion Birr into the economy [42]. Such magnitude of MPs consumption is strongly associated with the accessibility, economic affordability, and cultural acceptability of MPs in different communities of Ethiopia [43].

Data sources and search strategy

The present review describes the ethnobotany of MPs used to treat epilepsy and related symptoms in Ethiopia. It also focuses on the in vivo experimental evidence about the pharmacological efficacy of MPs in attenuating seizures in different animal models and on the type of bioactive compounds with profound anticonvulsant outcomes from the phytochemical investigation of MPs to establish a solid foundation for future research to develop plant-based antiepileptic agents. For this purpose, ethnobotanical data about the antiepileptic MPs found in Ethiopia were searched and downloaded from online research databases (PubMed, Medline, Web of Science, Google Scholar, Science Direct, and other institutional repositories) written in English using specific keywords such as “medicinal plants”, “medicinal herbs”, “ethnobotanical study”, “traditional medicine”, “traditional medication”, “plant remedies”, “herbal remedies”, “traditional healers”, “indigenous knowledge”, “folk medicine”, “traditional healers” + “Ethiopia”. Plant use reports for epilepsy and related symptoms were compiled and examined in terms of the habit of the MPs, parts used, condition of remedy preparation, route of administration, number of use citation (by Districts), target groups, etc. Based on the ethnobotanical information, a combination of keywords such as “scientific name of MPs” + “convulsions”, “anticonvulsant”, “seizure”, “antiseizure”, “epilepsy”, “antiepileptic”, “epileptic seizure”, “phytochemical investigation”, “active compounds”, “phytochemical screening”, “phytoconstituents”, “secondary metabolites”, “toxicity profiles”, etc. were used to search and collect relevant data on MPs with in vivo antiepileptic activities, toxicity profiles and to identify the phytochemicals (with already known anticonvulsant activities) present in the target MPs. The in vivo antiepileptic activities of MPs were analyzed based on the type of seizure-inducing agents, animal model, effective doses, and observed outcomes.

Results and discussion

Ethnobotany of medicinal plants used for the treatment of epilepsy

Plant distribution across families and geography

In this review, a total of 96 PS was found to have traditional healthcare prominence for the treatment of epilepsy and related symptoms in Ethiopia (Table 1). Of which 79 and 8 PS (Agrocharis melanantha, Artemisia abyssinica, Crotalaria spinose, Cucurbita pepo, Erianthemum dregei, Myrica salicifolia, Solanum incanum, and Vigna membrancea) were used to suppress ES in humans and animals, respectively. Arundinaria alpina, Azadirachta indica, Croton macrostachyus, Echinops Kebericho, Embelia schimperi, Nicotiana tabacum, Ocimum lamiifolium, Satureja abyssinica and Vernonia amygdalina were used to treat both human and livestock epilepsy cases. The reported MPs were distributed across 43 families and the highest occurrence belonged to Asteraceae (9, 20.93%), Fabaceae (8, 18.6%), Euphorbiaceae (7, 16.27%), Solanaceae (5, 11.63%), Lamiaceae (4, 9.3%) and Rubiacea (4, 9.3%). Apocynaceae, Celastraceae, and Rutaceae were represented by 3 (6.98%) PS each. In addition, Apiaceae, Cucurbitaceae, Verbenaceae, Malvaceae, Myrsinaceae, Myrtaceae, Oleaceae, Polygonaceae and Vitaceae families possessed 2 (4.65%) PS each. Other 26 families possessed a single PS effective against epilepsy in Ethiopia. Asteraceae, Fabaceae, Euphorbiaceae, and Solanaceae are the dominant families commonly found in the Ethiopian and Eritrean flora [44]. Thus, the mere presence of such PS in a relatively higher number in the antiepileptic MPs list is not a surprise. Overall, the data showed the cultural significance and medicinal importance of Asteraceae, Fabaceae, Euphorbiaceae, and Solanaceae families in the management of ES in Ethiopia. The dominance of Asteraceae, Fabaceae, Euphorbiaceae, and Solanaceae families were also reported in several ethnobotanical surveys conducted to document the MPs and associated indigenous knowledge used to treat different ailments in Ethiopia [45, 46].

Table 1 Ethnobotanical data of MPs used to treat epilepsy and related symptoms in Ethiopia

TMs, especially MPs are routinely used for the management of different diseases in the traditional healthcare system of the Regional States of Ethiopia [47,48,49,50,51,52,53]. Although these Regional States share some common entities, they have distinct biodiversities, agro-ecology, cultures, livelihood, values, beliefs, etc. which nurture the indigenous knowledge and traditional practices of dwellers. Hence, multifaceted treatment approaches and miscellaneous traditional remedies are prevalent in different cultural groups of Ethiopia [36, 44, 54, 55]. In line with this fact, the present literature review reiterated that the use citations of antiepileptic MPs are widely distributed across the different regional states of Ethiopia (Fig. 1): Oromia (29 PS), Amhara (25 PS), Southern Nations, Nationalities and Peoples (33 PS), Afar (4 PS), Tigray (8 PS), Benshangul-Gumuz (3 PS) and Dire Dawa Administration Council (2 PS). More than 70% of MP species prescribed for the treatment of seizure in Ethiopia belonged to the three most populous and diverse regions, namely Oromia, Amhara, and the SNNP Regional States. This may be attributed to the presence of different biodiversities, cultural pluralities, and thereby rich indigenous MPs knowledge and practice in the regions. Despite the cross-cultural connections and neighborhood manifested by the long common border between Oromia and Amhara regions as well as Oromia and SNNP regions, the consensus of THs on antiepileptic MPs was quite low, only a few MPs were commonly used across the regions.

Fig. 1
figure 1

Location map of Ethiopia. The different colored areas represent the regional states in Ethiopia where the use of plant-based medicines are reported

Parts used, condition of preparation, and mode of administration of MPs

Among the reported 95 MPs, shrubs accounted for 35 (36.46%) PS. Herbs 30 (31.25%) and trees 21 (21.88%) were the second and third most abundant growth forms of MPs. On the other hand, 10 (10.42%) MPs were climbers. The relative abundance of shrubs in Ethiopian flora and its accessibility in year-round may have contributed to higher use citation of shrubs in antiepileptic medication preparation [35]. The THs of Ethiopia preferred leaves, (66, 44. 59%) over other plant parts for the preparation of remedies. They also often used roots (52, 34.14%) and seeds (10, 6.76%) for the formulation of medicinal recipes. In addition, bulbs, stembark, rootbark, apex, rhizome, flowers, fruits, the whole plant, and aerial part of MPs were also used for the extraction of effective medicines for seizure. The presence of bioactive compounds, both in therapeutic abundance and variety, in leaves and roots may be associated with the curative effects of such recipes against epilepsy [56, 57]. Fresh organs of plants (81, 64.8%) were often employed for the preparation of antiepileptic medications in Ethiopia. Dry forms of plant parts (23, 18.4%) were also used for the preparation of remedies. Nearly 17% of plant parts were used regardless of the condition they exist (either fresh or dry). As fresh plant parts are rich in bioactive metabolites, they are frequently sought for the formulation of remedies not only for epilepsy but also for other ailments in Ethiopia. In addition, fresh plant parts are convenient to prepare medications using crushing, squeezing, maceration, infusion, decoction, etc., and can be ready for use in a short period as compared to dry plant organs [44].

Diverse approaches and strict procedures are followed by the THs for the preparation of remedies: abstraction of pharmacologically relevant crude extract or essential oils from different plant organs in Ethiopia [47, 58, 59]. Depending on the perceived knowledge of the THs, some may prefer crushing for remedy preparation while others may use tying or burning of the same plant part for the same ailment. The antiepileptic medications in Ethiopia were most commonly prepared using crushing, squeezing, maceration, pounding, grinding, decoction, etc. techniques. Water was the main extraction solvent employed in most preparations to tailor the concentration of the recipe to the supposed level of therapeutic efficacy and to avoid dose-related toxicities in patients [45]. Additives such as milk, “tella” (local beer), “teff injera” (flat bread), sugar, etc. [60,61,62] were used to improve the taste of the recipe and to enhance patient compliance towards the formulations. Most of the antiepileptic herbal formulations were administered through the oral route (63, 51.64%) by drinking, chewing, etc. followed by nasal (41, 33.61%) in the form of sniffing, smoking, and fumigation. Dermal route of administration (ROA) (18, 14.75%) (through fumigation and washing) was seldom employed for the delivery of antiseizure herbal medications in the Ethiopian context. Oral is described as the primary ROA in several ethnobotanical studies conducted elsewhere [48, 59] due to the fast onset of action and ease of application.

Multiple medicinal plants prescriptions for the treatment of epilepsy

Combinations of two or more PS are seldom used to formulate remedies for epilepsy and related symptoms in Ethiopia and elsewhere [100]. This is based on the fact that the consumption of multiple MPs could have potential synergistic outcomes and thereby enhanced pharmacological activities. For instance, the roots of four MPs including Guizotia scabra, Ajuga integrifolia, Foeniculum vulgare, and Withania somnifera have been used for the preparation of remedy that can be taken through the oral route in Adaꞌa District, Oromia Regional State, Ethiopia [90] that can potentially attenuate convulsions in humans (Table 2). On the other hand, leaves of Artemisia abyssinica, Brucea antidysentrica, and Cucumis ficifolius were employed for the preparation of recipes effective against epilepsy, when taken orally, around Jimma, Oromia Regional State, Ethiopia [101]. Similarly, the leaves of Nicotiana tabacum, Ocimum lamiifolium, and Withania somnifera were also used for the preparation of remedies that can be applied externally (dermal route) to relieve seizure [102]. Herbalists living around Fiche District, Oromia Regional State, Ethiopia prepare a remedy for epilepsy from leaves of Hypericum quartinianum, Podocarpus falactus, and Teclea nobilis for external application through the nasal ROA [92]. The different classes of phytochemicals such as alkaloids, flavonoids, terpenoids, etc. present in these MPs and their combined effect in enhancing the relative abundance/concentration and amplifying the pharmacological efficacy through synergism may be associated with the preparation of efficient antiepileptic recipes from multiple MPs. Ocimum lamiifolium, Nicotiana tabacum, Ruta chalepensis and Withania somnifera were most frequently sought MPs for the preparation of antiseizure medications, each become part of two different formulations [35, 90, 94, 102]. The wide application of Ocimum lamiifolium, Nicotiana tabacum, Ruta chalepensis and Withania somnifera in different formulations might be due to the presence of convulsion-suppressive bioactive compounds in such MPs. For obvious reasons, the use of formulations of multiple MPs is a common practice in the treatment of epilepsy in different parts of the world [103].

Table 2 Ethnobotanical data of multiple MPs prescriptions used to treat epilepsy and related symptoms in Ethiopia

Global importance of the medicinal plants in the treatment of Epilepsy

Among the reported MPs for the treatment of epilepsy and related symptoms in Ethiopia, 34 PS were also routinely used for the same indications in different parts of the world including Africa, Asia, the Middle East, and Latin America (Table 3). Among these, Carissa edulis was the most popular (cited in six countries) antiepileptic MP frequently used to control seizure in Ethiopia, Nigeria, South Africa, Uganda, Malawi, and Kenya [104,105,106,107,108]. Similarly, Maytenus senegalensis was another well-known (cited in five countries) anticonvulsant MP in Africa including Ethiopia, Uganda, Zimbabwe, South Africa, and Guinea-Bissau [100, 106, 107, 109]. Withania somnifera was another multipurpose MP (cited in four countries) used to control convulsions in Ethiopia, Lesotho, India, and in East African countries [107, 110, 111]. Moreover, Acacia seyal, Acalypha fruticosa, Allium sativum, Balanites aegyptica, Biophytum umbraculum, Clerodendrum myricoides, Euphorbia tirucalli, Indigofera arrecta, Maytenus heterophylla, Nicotiana tabacum, and Ruta chalepensis were the other MPs reported for their usefulness against convulsions in at least three countries [100, 103, 106, 107, 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126]. The remaining MPs: Artemisia afra, Asparagus africanus, Azadirachta indica, Capparis tomentosa, Clutia abyssinica, Croton macrostachyus, Cucurbita pepo, Eucalyptus globulus, Indigofera articulata, Indigofera coerulea, Jatropha curcas, Myrica salicifolia, Olea europaea, Opuntia ficus-indica, Sida rhombifolia, Xanthium stramonium, and Zingiber officinale were indicated for epilepsy in Ethiopia and at least one other country [105, 106, 108, 109, 118, 127,128,129,130,131,132,133,134,135,136,137]. The extensive use of MPs across different countries of the globe echoed the existence of shared ethnopharmacological knowledge among the THs, the importance of such MPs in the healthcare system of LMIC, especially in tropical and southern Africa, and more importantly, the pharmacological efficacy of the MPs in the treatment of epilepsy and related symptoms.

Table 3 List of MPs plants used to treat epilepsy and related symptoms in other parts of the world

Pharmacological evidence of reported medicinal plants

Animal models for screening of anticonvulsant or antiepileptic agents

The anticonvulsant or antiseizure activity of MPs claimed by THs for the management of epilepsy could be verified by using different in vitro and in vivo experiments. In 1937, electrically-induced convulsions in cats were used to check the bioactivity of phenytoin, the first modern AED [142]. Later, this initiative paved the way for the discovery of other seizure models responsible for the discovery of more safe and efficacious second-generation AEDs such as lamotrigine, levetiracetam, topiramate, lacosamide, pregabalin, etc. [143]. The ability of crude extracts or bioactive compounds to suppress different forms of seizures can be examined by animal models by artificially induced convulsions using maximal electroshock (MES) or drugs such as pentylenetetrazol (PTZ), picrotoxin (PIC), strychnine (STR), pilocarpine (PLC), isonicotinic hydrazide acid (INH), Kainic acid (KA), 4-aminophylline (AMP), bicuculline (BIC), etc. [144]. The similarity in the pattern of seizure triggered by different stimuli in animal models with humans, simplicity upon execution, quick response rate, and most importantly, predictive clinical outcomes in humans [145] make the in vivo seizure models trustworthy in epilepsy research. In general, MES acute seizure tests characterized by tonic extensions of forelimbs in and hind limbs followed by all limb clonus in mice/rat; subcutaneous PTZ acute seizure tests manifested by myoclonic jerks followed by unilateral forelimb and bilateral clonus, vibrissae twitching in mice/rats and a Kindled rodent model of chronic hyperexcitability characterized by unilateral and bilateral forelimbs clonus that progresses to rearing and falling in rats are the most common and “clinically validated” models for early evaluation of AEDs [142]. Albeit, the aforementioned acute seizure models failed to trace bioactive compounds effective against refractory or drug-resistant seizures. Thus, there had been a pressing need for the discovery of alternative seizure models which can embrace the deviations observed in “clinically validated” models. More recently, several non-mammalian seizure models consisting of fruit flies (Drosophila melanogaster), medicinal leeches (Hirudo verbena), planaria, roundworms (Caenorhabditis elegans), tadpoles (Xenopus laevis), zebrafish (Danio rerio), etc. were recognized for their versatility to assess the anticonvulsant activities of synthesized compounds or plant extracts [146, 147]. Of which, the zebrafish larvae were the most frequently used seizure model because of its high fertility rate and development, similar CNS organization with mammals which can be observed in translucent egg and embryo make it ideal to study CNS disorders provoked by external stimuli [148]. PTZ, KA, PLC and electrical stimulation are employed to induce convulsions in in the aforesaid non-mammalian seizure models [147].

In vivo pharmacological activities of antiepileptic medicinal plants

CAMs, especially herbal remedies are extensively used for the treatment of epilepsy across the globe due to their desirable treatment outcomes and tolerable side effects [144]. Moreover, herbal therapies may yield a new horizon for treating patients seeking inexpensive treatments for untreated epilepsy and experiencing refractory seizures. Taking the popularity of the MPs prescribed for treatment and management of epilepsy in different cultural groups across the globe into account, preliminary in vitro and/or in vivo pharmacological evaluation of MPs and phytochemical isolation of bioactive compounds have been conducted to test the validity of the hypothesis made by THs found elsewhere. Researchers employed different animal models to quantify the extent of suppression of different forms of seizures induced via MES, PTZ, PIC. STR, PLC, NIH, and BIC by the crude extracts or solvent fractions of MPs claimed to have potential anticonvulsant activities. This section highlighted the in vivo anticonvulsant activity of MPs (Table 4) whereby ethnobotanical studies conducted in Ethiopia and other parts of the world reiterated their profound pharmacological activities against epilepsy and related symptoms.

Table 4 Plant crude extracts with in vivo antiepileptic/anticonvulsant activities

In vivo pharmacological activities of crude extracts and solvent fractions

Single stimuli-induced seizure model

PTZ is routinely used as a stimulus to induce convulsions in different animal models by inhibiting the GABAergic neurotransmission [170]. PTZ-induced seizures are characterized by an initial ‘absence-like’ immobility, followed by brief myoclonic jerks, sustained myoclonus, and finally GTCS with a loss of the righting reflex. The subcutaneous administration of PTZ is often used to induce a seizure in mice [171] that can be employed to assess the anticonvulsant activity of MPs. The whole plant and leaf extract of Artemisia afra are traditionally used for the treatment of epilepsy in Ethiopia and South Africa, respectively (Table 3) [105]. Kediso et al. [151] investigated the anticonvulsant effect of the HET and solvent fractions of Artemisia afra whole part against PTZ-induced seizure in mice. Unlike the solvent fractions, the HET crude extract triggered a significant delay in the mean onset of convulsions (504.833 ± 62.835 s, 551.833 ± 74.69 s, and 808.333 ± 64.8 s) and a decrease in the mean duration of convulsions (17.000 ± 1.88 s, 13.000 ± 1.8 s and 7.833 ± 1.07 s) at the respective doses of 250, 500 and 1000 mg/kg. The observed activity of the crude extract might be attributed to the presence of multiple secondary metabolites in the herb. Clerodendrum myricoides is another MP whose leaf extract is traditionally used as an anticonvulsant in Ethiopia, Kenya, and South Africa [100, 119]. Owing this, the anticonvulsant activity of the HET and solvent fractions of the leaf extract was assessed via mice experiencing PTZ-induced seizures [157]. The HET crude extract of Clerodendrum myricoides at 300, 600 and 1200 mg/kg significantly delayed the mean latency in the onset of seizures (299.33 ± 30.129 s, 387.167 ± 27.6 s and 417.833 ± 31.9 s, respectively) and decrease in the duration of convulsions (27.333 ± 1.585 s, 16.833 ± 1.537 s and 10.50 ± 0.671 s, respectively) in a dose dependent manner as compared to the control group. On the other hand, the solvent fractions of Clerodendrum myricoides didn’t show significant anticonvulsant effect in the model.

Ruta chalepnesis is known for its antiepileptic activities in the traditional folklore of Ethiopia, Morocco, and Mexico [125, 126]. The ET extracts of the aerial parts of Ruta chalepnesis were assessed by using PTZ-induced seizure and a dose-dependent suppression in the tonic phase was observed, moreover, it reduced the mortality triggered by PTZ in the experimental animals. Azadirachta indica is employed in the traditional healthcare system of Ethiopia and India to treat epilepsy [128]. Kumar et al. [152] compared the antiseizure activities of Valproic acid (VPA) and Azadirachta indica on PTZ-induced kindling in Sprague Dawley strain male rats at 200 mg/kg and 100 mg/kg, respectively. A decrease in the mean onset time of jerks, clonus, and extensor phases was observed in VPA and Azadirachta indica treated groups. Moreover, an increase in glutathione reductase activity and a decrease in the activity of lipid peroxidation enzymes, glutathione S-transferase activity, catalase, and nitric oxide was observed in the same group, asserting the protective effects of VPA and Azadirachta indica against anoxic damage and OS of the brain due to prolonged seizures. Overall, Azadirachta indica demonstrated better preventive effects than VPA on PTZ-induced chemical kindling in rats. Asparagus africanus is a widely used plant in TM as an anti-inflammatory, antioxidant, for the treatment of CNS disorders including epilepsy. The anticonvulsant activity of the root decoction of Asparagus africanus was evaluated in PLC-induced SE in Mus musculus Swiss mice. It increased the onset time of tonic–clonic convulsions and decreased the duration and number of tonic–clonic convulsions at doses of 63.5, 127, and 254 mg/kg. The anticonvulsant activity of Asparagus africanus emanated from modulation of GABA (increase), GABA-T, TNF-α (decrease) levels, and inhibition of OS in the brain [127].

Dual stimuli-induced seizure models

MES is the second most commonly used seizure-inducing stimuli in different animal models of epilepsy next to PTZ. It is convenient to assess GTCS that can be reproduced with reliable endpoints [172]. The use of two common stimuli, PTZ and MES, in different animal models will help to better understand the pharmacological effects and the MOA of anticonvulsant agents. Carissa edulis is commonly used for the treatment of epilepsy in Africa especially in Ethiopia, Nigeria, South Africa, Uganda, Malawi, and Kenya [104,105,106,107,108]. Owing to this, the anticonvulsant activity of the rootbark of Carissa edulis was investigated using PTZ-induced seizure in mice and the MES test in chicks. It exhibited a suboptimal level of inhibition against seizure as compared to benzodiazepine (BZP) (100%) in the mice model. Moreover, the crude extract elicited 90% protection as compared to phenytoin (100%) at 20 mg/kg in convulsions induced by MES in chicks signifying the beneficial effect of Carissa edulis for the management of epilepsy and related symptoms [104]. Clutia abyssinica is claimed to have antiepileptic activity in traditional herbal medicine folklore of Ethiopia and Rwanda [129]. Although the HET leaf crude extract of Clutia abyssinica improved the mean survival time of epileptic mice, the recorded mean time of hind limb extension was not significant at 400 and 800 mg/kg as compared to the negative control group [158]. Leaves of Jatropha curcas have been used by TH of Ethiopia and Nigeria for the management of epilepsy. Bolanle et al. [134] examined the anticonvulsant activity of AQ leaf extract of Jatropha curcas in PTZ- and MES-induced seizure models. The crude extract delayed the onset of tonic leg extension and the seizure-induced mortality was inhibited in mice. Moreover, it significantly (p < 0.05) protected mice from MES-induced seizure at 100, 200 and 400 mg/kg. at a higher dose, 400 mg/kg, it also significantly inhibited PTZ-induced convulsions.

Pentas schimperiana is a MP used in Ethiopian TM for the treatment of epilepsy. Fisseha et al., [162] assessed the HME rootbark crude extract and CH, BU, and AQ fractions of Pentas schimperiana using PTZ and MES-induced seizure models at doses of 200 and 400 mg/kg. As compared to the control group, the ME and BU fractions, at 400 mg/kg, demonstrated significant (p < 0.001) anticonvulsant activities in both models. In addition, the CH fraction exerted significant (p < 0.001) seizure control in PTZ treated mice whereas the aqueous fraction was devoid of significant antiepileptic activities in both models. In general, the alkaloids, flavonoids, saponins, tannins, phenols, steroids, and terpenoids present in the rootbark may be ascribed to the observed seizure control in mice. Sida rhombifolia is a plant commonly prescribed for the treatment of epilepsy by the THs of Ethiopia and India [136]. The ME crude extract of the whole part of Sida rhombifolia was examined PTZ and MES-induced seizure in mice at 100, 200, and 400 mg/kg. The result reiterated that the ME crude extract of 100, 200, and 400 mg/kg significantly suppressed the duration of seizure as compared to the control group in both models. Xanthium stramonium is a famous MP in China due to its widespread healthcare prominence. It is also used for the treatment of epilepsy in Ethiopia and India [141]. Owing to this, Kumar et al. [167] screened the anticonvulsant activity of the PE whole plant extract of Xanthium stramonium against PTZ and MES-induced seizure models in albino Wistar rats at a dose of 250 and 500 mg/kg. It increased the latency onset of myoclonic spasms and clonic convulsions in PTZ-treated groups. In addition, it also reduced the mean duration of the exterior phase significantly as compared to the control group in the MES test. The root of Azadirachta indica was used in herbal formulations prepared to treat epilepsy in different countries. The in vivo anticonvulsant assessement done on PTZ-induced seizure in mice and MES-induced seizure in Albio rats indicated that the ET root extract has no significant effect on the mean duration of limb extension, mean onset of convulsions and mean number of convulsions at a dose of 800 mg/kg as compared to the control group [153].

Multiple stimuli-induced seizure models

Multiple stimuli-induced seizure models provide better information about the effect of drugs or a plant extract in the target experimental animals. The depth and breadth of data obtained in such multiple seizure models can shed light on the different aspects of the plant extract under consideration: MOA, potential targets for antiepileptic interventions, possible bioactive compounds, etc. In addition to PTZ and MES, one or more of the following stimuli such as INH, PIC, PLC, NMDA, STR, AMP, and BIC are used to induce convulsions (in experimental animals) in epilepsy research. Traditional herbalists of Ethiopia, Tanzania, and Kenya [113, 114] have faith in the curative effect of Acalypha fruticosa for the treatment of epilepsy. Govindu et al., [113] assessed the anticonvulsant activity of the CH crude extracts of the aerial parts of Acalypha fruticosa using PTZ, MES, and INH-induced seizures in Swiss albino mice at doses of 30, 100, and 300 mg/kg. The result confirmed the potential of the crude extract to suppress seizures triggered by MES in a dose-dependent pattern. At 300 mg/kg, as compared to diazepam (4 mg/kg) the extract demonstrated more pronounced anticonvulsant activity. It also inhibited the PTZ-induced seizures better than the positive control, phenobarbitone sodium. While in the INH model, it delayed the onset of convulsions in a dose-dependent manner but failed to protect the mice from seizure-induced mortality. Balanites aegyptiaca is used traditionally in Ethiopia, Mali, Saudi Arabia [116, 117], and India to treat epilepsy. Hence, HMET and CHL extract of stembark of Balanites aegyptiaca were assessed using PTZ, MES-induced convulsions, and PLC-induced SE in rats [154]. Both the HME and CH extract at 200 and 400 mg/kg significantly delayed the onset of myoclonic spasm and clonic convulsions as well as significantly reduced the duration of hind limb extension in PTZ and MES models. In the PLC model, the CH extract (100 mg) and HME extract (100 and 200 mg) delayed the latency to rearing with forelimb clonus significantly.

Carissa edulis is popular in African countries such as Ethiopia, Nigeria, South Africa, Uganda, Malawi, and Kenya [104,105,106,107,108] for its beneficial effect in the management of epilepsy by herbalists or TH. The anticonvulsant activity of the AQ fractions (150, 300, and 600 mg/kg) and sub-fractions (250, 500, 500, and 1000 mg/kg) of the rootbark extract was examined using PTZ, PIC, NMDA, INH, STR, and AMP-induced seizures in mice. The AQ fraction and sub-fractions suppressed 50% and 16.67% of PTZ-induced convulsions. Similarly, the AQ fraction experienced 33.33% and 16.67% protection against strychnine and NMDA seizure models, respectively. Moreover, the AQ fractions elicited 66.67–33.33% protection against AMP-induced seizures at doses of 150 and 600 mg/kg. However, the AQ fractions and sub-fractions did not affect MES-induced seizures. Croton macrostachyus is a common tree used to treat epilepsy in Ethiopia and Cameron [140]. Bum et al. [140] employed MES, STR, PTZ, PIC, and INH-induced seizure models to evaluate the anticonvulsant activity of AQ stembark extract of Croton macrostachyus in Mus musculus Swiss mice. The extract protected 60, 80, 80, and 80% of mice from MES, PTZ, PIC, and STR-induced convulsions, respectively even at an initial dose of 34 mg/kg. It also increased the latency onset of seizures in INH-treated mice. Overall, the result suggested that Croton macrostachyus may have a promising effect in secondary GTCS and primary generalized seizures in humans. Opuntia ficus-indica commonly known as cactus pear is used in the treatment of epilepsy in Ethiopia and India [135]. The in vivo anticonvulsant activity of the flower ME extract was assessed using Swiss Albino mice. The ME extract produced significant inhibition against PTZ, MES, and STR-induced convulsion at 250 and 500 mg/kg. There was an increase in noradrenaline and dopamine level in the mice's brains due to the avoidance of MES-induced convulsions.

In vivo pharmacological activities of isolated compounds/constituents

Indigofera arrecta is a common MP used by the indigenous inhabitants of Ethiopia, Nigeria, Congo, and South Africa [100, 122]. Bioassay-guided fractionation of Indigofera arrecta in zebrafish model results in the identification of indirubin and 6-bromoindirubin-3ꞌ-oxime (BIO-acetoxime), compounds with glycogen synthase kinase (GSK)-3 inhibition activity demonstrated significant anticonvulsant activity in PTZ-induced seizure in zebrafish larvae. Moreover, they also showed significant antiseizure activity in the PLC rat model limbic seizure and the 6-Hz refractory seizure mouse model, demonstrating GSK-3 inhibition as a potential therapeutic target for epilepsy. Olea europaea is among the known MPs used for the management of epilepsy in Ethiopia and Kenya [108]. Oleuropin, a secondary metabolite extracted from the leaves of Olea europaea, elicited a significant increase in seizure latency and a significant decrease in total frequencies of head ticks, head and upper limbs seizures, frequent spinning and jumping, and tonic seizures in PTZ kindling of seizure in mice. Oleuropin treated groups (20 mg/kg) showed downregulation of genes responsible for the expression of IL-1 without change in GLT-1 levels. The significant antepileptic activity of oleuropin may be attributed to its antioxidant and antiinflammatory activities making it an ideal pharmacophore for the synthesis of AEDs. Zingiber officinale is another most frequently used medicinal herb in different parts of the world. For instance, in Ethiopia and Japan Zingiber officinale is used for the management of epilepsy [137]. Its HET extract of rhizome has demonstrated anticonvulsant activity in rodent seizure models [169, 173]. Gawel et al., [168] also proved the anticonvulsant effect of ME crude extract using a PTZ-induced seizure in zebrafish larvae. Inspired by its activity, the group also isolated the major constituent of Zingiber officinale rhizome, 6-gingerol (6-GIN) that exerted dose-dependent antiseizure activity in PTZ-induced hyperlocomotion assay in zebrafish larvae. Rigorous experimental procedures and molecular docking analysis in human NR2B-containing NMDA receptors suggested that the antiepileptic activity of 6-GIN may be partly mediated by restoring the balance between GABA and GLU in the epileptic brains. In general, the in vivo anticonvulsant activity of the aforementioned MPs resonated the potentials of herbal formulations in the healthcare system of different countries. Although most of the antiepileptic MPs claimed by THs were not screened for their anticonvulsant effects through suitable seizure models, this review partly documented the strong association that exist between the indeginous knowledge of THs and pharmacological activities of MPs used to treat epilepsy and related symptoms in Ethiopia and other parts of the world.

Toxicity profiles of antiepileptic or anticonvulsant medicinal plants

Acute toxicity profiles of medicinal plants

Acute toxicity study of plant extracts is performed to the assess the potential inherent toxicity that may be displayed in a short period of time upon a single dose exposure mostly via the oral route as it is considered as a viable route for accidental human exposure for hazardous substances and it allows for hazard classification of test substances [174]. The leaf part of Artemisia afra, Azadirachta indica, Brucea antidysenterica, Buddleja polystachya, Eucalyptus Globulus, Gloriosa superba, Maytenus heterophylla, Nicotiana tabacum, and Ocimum lamiifolium are commonly used for the preparation of remedies used to treat epilepsy and related symptoms in Ethiopia. The acute toxicity studies conducted in the crude extracts, essential oils and bio-oils recapped the absence of gross behavioral, physical changes and signs of overt toxicity such as lacrimation, urination, muscle weakness and convulsions in different animal models [175,176,177,178,179,180,181]. As depicted in Table 5, relatively higher LD50 value greater than 5000 mg/kg of body weight were recorded for Artemisia afra, Azadirachta indica, Gloriosa superba, and Nicotiana tabacum extracts. In addition, the EO of Eucalyptus Globulus, and HET extract of Maytenus heterophylla 2.5 mL/kg and > 1200 mg/kg, respectively demonstrating the safety profiles of single dose of the plant extracts. Furthermore, the roots of Asparagus africanus, Biophytum umbraculum, Capparis tomentosa, and Withania somnifera are believed to be rich in bioactive chemicals characterized by attenuating convulsions. Their crude extracts and solvent fractions were devoid of any inherent acute toxicity symptoms at a single dose greater than 2000 mg/kg body weight [182,183,184,185]. The AQ and HME stembark extract of Croton macrostachyus (LD50 > 5000) and the ET rootbark crude extract of Carissa edulis, (LD50 ⁓3,808) were found to be safe [186, 187], consequently, the experimental animals manifested neither visible signs of lacrimation, loss of appetite, tremors, hair erection, salivation, diarrhea and convulsion nor mortality in the study period at the estimated doses equivalent to LD50 values. According to Globally Harmonized Classification System (GHCS) for chemical substances and mixtures, synthetic chemicals and plant extracts having an LD50 > 2000 mg/kg of body weight is considered as safe [188]. This reiterated the relative safety profiles of most MPs used to treat epilepsy and related symptoms in Ethiopia.

Table 5 Acute toxicity profiles of some MPs employed in the treatment of epilepsy and related symptoms

Subacute toxicity profiles of medicinal plants

Acute toxicity studies provide preliminary data about the safety profiles of a single dose of chemical agents [225], consequently, it is considered as shallow and sometimes misleading. Better information about the safety of chemicals of synthetic and natural origin can be obtained from the subacute toxicity studies, which involve repeated administration of the chemical agent under consideration. In subacute toxicity assessments, weight loss of experimental animals is an important variable that can be attributed to harmful effects of test substances [179]. A weight loss, that may be attributed to the anti-nutritive and malabsorption effect of chemical agents, that amount to ≥ 10% can be considered a sign of toxicity even in the absence of other changes on target organs, haematological or biochemical effects [226]. The subacute toxicity of plant-based materials including crude extracts, solvent fractions, bio-oils, essential oils, etc. was evaluated through repeated administration a specific dose in different animal models with the intention of assessing its accumulation in the body with gradual effects on tissues and organs [188]. In this regard, Loha et al. [179] assessed the subacute toxicity of HME leaf extract of Syzygium guineense in rats at 500 and 1500 mg/kg of body weight. Herein, the rats were devoid of significant change on behavior, gross pathology, body weight, and hematological and biochemical parameters, asserting the safety profile of the leaf extract at a repeated dose of 1500 mg/kg. In addition, subacute toxicity study was conducted on EO obtained from Echinops kebericho tuber at the doses of 100, 200 and 400 mg/kg [201]. The EO treated groups did not experience significant dose-dependent alterations in body weight, clinical chemistry parameters and relative organ weights. Deyno et al. [202] confirmed that Echinops kebericho decoction was well tolerated up to the dose of 600 mg/kg body weight as food consumption, body weight, organ weight, hematology, clinical chemistry, and histopathology did not show significant alterations between control and treatment groups.

Moreover, subacute toxicity studies conducted on the different extracts of antiepileptic or anticonvulsant MPs such as Allium sativum (AQ bulb extract at 300 mg/kg) [190], Artemisia abyssinica (ET extract of the aerial part at 3000 mg/kg) [191], Artemisia afra (AQ leaf extract at 1800 mg/kg) [175], Asparagus africanus (HET and BU root extracts) [182], Azadirachta indica (AQ leaf extract at 1000 mg/kg) [176], Capparis tomentosa (HME root extract at 1000 mg/kg) [184], Eucalyptus Globulus (EO of leaf at 2 mL/kg) [178], Olea europaea (ET leaf extract at 400 mg/kg) [212], Opuntia ficus-indica (HET stem extract at 2000 mg/kg) [213], Myrica salicifolia (HME root extract at 400 mg/kg) [211], Sida rhombifolia (AQ root extract at 1200 mg/kg) [221], and Withania somnifera (ME root extract at 2000 mg/kg) [185] clearly asserted their safety profiles at the respective maximum doses per body weight as manifested by the absence of significant treatment related variations in clinical observations, ophthalmic examination, body weight gain, feed consumption, clinical pathology evaluation, organ weight, and so on. On the other hand, notable discomforts or mild signs of toxicities were observed on rats treated with some MPs utilized in the management of epilepsy and related symptoms. For instance, Zewdu et al. [203] conducted subacute toxicity study on the HET fruit extract of Embelia Schimperi in Wistar rats at doses of 400 and 1600 mg/kg body weight. The result revealed that chronic administration of the extract (1600 mg/kg) was not significantly associated with body weight loss and organ weights such as liver and kidney. Some haematological and biochemical parameters such as platelets and AST concentration were significantly increased which may be attributed to inflammation of liver and kidney tissue upon repeated dose exposure, stressing the mild toxicity of the fruit extract of Embelia Schimperi at a dose of 1600 mg/kg or higher. In addition, fixed oil of Zingiber officinale root was found to have inherent propensity to trigger a range of toxicities (0.4 mL/kg) including hypertrophy of the liver, kidneys, lungs and spleen, cellular toxicity and oxidative stress following 60-day subchronic toxicity study [224]. Similarly, repeated administration of Clerodendrum myricoides AQ root extracts in mice causes reduction in body weight gain, damage to the liver and kidney and changes in some hematological and biochemical parameters in mice. The research group also reported the significant body weight loss of the AQ leaf extract of Croton macrostachyus at 1000 mg/kg in the treated groups [227].

Developmental toxicity profiles of medicinal plants

Prenatal development is comprised of pre-embryonic, embryonic and fetal stages. The embryonic stage is a critical period where organs of the embryo as well as the placenta can be damaged if exposed to toxic agents directly or indirectly. At times, toxic agents may cross the compromised placental membrane and elicit debilitating effect on the developing embryonic/fetal tissues [228]. The developmental toxicity studies of crude extracts, solvent fractions and/or essential oils has paramount healthcare implications for PS consumed by pregnant women for therapeutic as well as nutritional purpose [229]. In this regard, the effect of some MPs that are frequently employed to relive seizure in patients with epilepsy on prenatal growth (developing embryos and fetuses) are assessed by using different animal models. For instance, the developmental effect HET fruit extract of Embelia schimperi on embryo and fetuses was investigated by using Wistar albino rats and the result echoed that the crude extract was devoid of a significant toxic effect on embryonic and fetal development indices (in the period of organogenesis) at a dose of 1000 mg/kg body weight [230]. Similarly, the HET leaf extract of Syzygium guineense was evaluated at a dose of 250, 500 & 1000 mg/kg in the same animal model and the extract didn’t compromise the number of implantations, fetal resorptions, live births, and stillbirths in the same animal model though there was dose-dependent decrease in the weight of the fetuses and the placentae [228]. Abebe et al., also assessed the teratogenic potentials of the HET leaf extract of Gloriosa superba on Wistar albino rats (220–240 g) at a dose of 250, 500 and 1000 mg/kg of body weight. The crude extract was devoid of any significant teratogenic effects on rat embryos/fetuses up to 500 mg/kg but influenced the growth of embryos at 1000 mg/kg of body weight as manifested by diminished crown-rump length, decreased number of somites and morphological scores [231]. Moreover, the teratogenic effect of the HME leaf extract of Catha edulis was investigated on pregnant Wistar albino rats at a dose of 250, 500 & 750 mg/kg of body weight. The result echoed that khat extract presented dose-dependent toxicity in rat embryo and fetuses such as cytolysis, decidual hypoplasia and atrophy [232]. Overall, the aforementioned acute, subacute and developmental toxicity results witnessed the safety of MPs utilized in the management of epilepsy and related symptoms in Ethiopia.

Phytochemistry of medicinal plants with anticonvulsant activities

MPs have been used as a source of pharmaceutical agents for numerous indications and among small molecule drugs approved between 1981 and 2010, more than half were derived from natural products, mainly plants [233]. Cannabidiol is the first AED of plant origin (extracted from Cannabis sativa) approved by the United States Food and Drug Administration (FDA) in 2018 for the treatment of two rare and severe forms of epilepsy, Dravet syndrome and Lennox-Gastaut syndrome [234]. In LMICs, MPs are consistently used for the treatment of several CNS disorders including epilepsy partly due to their tolerable side effects and impressive efficacy [18]. Most of the MPs prescribed for epilepsy treatment by THs have shown promising anticonvulsant activity against stimuli-induced in vitro and in vivo seizure models [8, 146]. Generally, phytochemical constituents of MPs which belong to the class of alkaloids, flavonoids, terpenoids, glycosides, coumarins, etc. are implicated in the amelioration of convulsions as confirmed by different animal models [235]. They act on different targets such as synapses, receptors, and associated neuronal pathways, ion channels, immune system, inflammatory mediators, glial cells, etc. implicated in the occurrence and progression of epileptogenesis [235]. The antiepileptic activity of MPs discussed before was mostly based on the crude extract or EO rather than isolated active compounds. Consequently, it is difficult to gain full insight into the active constituents, possible targets, effective doses, and MOA of antiepileptic PMs. This section highlights the phytochemical constituents of MPs claimed by THs for their curative effects against epilepsy and proved by in vivo experiments using different stimuli-induced seizure models. It is noteworthy to mention that the bioactive compounds or secondary metabolites of MPs discussed below are obtained from independent phytochemical screening or investigations done elsewhere regardless of their use citations. In this regard, several phytoconstituents with profound anticonvulsant activities were found in different parts including leaf, stem, stembark, root, rootbark, rhizome, flower, aerial and whole part, etc. of the reported antiepileptic MPs (Table 6). Flavonoids and terpenoids (including monoterpenes, sesquiterpenes, diterpenes, triterpenes) are the most frequently encountered phytochemicals in the antiepileptic MPs discussed in previous sections.

Table 6 Phytoconstituents of MPs with in vivo antiepileptic/anticonvulsant activities

Flavonoids with anticonvulsant activities

Flavonoids, often synthesized by the phenylpropanoid pathway, belong to a class of phenolic compounds with a benzo-γ-pyrone structure that is ubiquitously distributed in plants [265, 266]. They are the first class of phytochemicals involved in the suppression of seizures in different animal models. Apigenin (Fig. 2) is one of the most common flavones found in Ajuga integrifolia, Balanites aegyptica, Nicotiana tabacum, and Olea europaea among others. It elicited pronounced anticonvulsant activity in PTC-induced seizures in SD rats as well as KA-induced seizure model through activation of GABAA receptor and inhibition of glutamatergic neurotransmission. Moreover, apigenin possesses inhibitory activity against hydroxyl radical generation through upregulation of reduced glutathione (GSH), consequently, can inhibit neuronal damage in the hippocampal caused by oxidative glutamate toxicity (involved in neuronal death due to epilepsy) [267]. Rutin is a flavonoid glycoside and a constituent of Balanites aegyptica, Buddleja polystachya, Carissa edulis, Opuntia ficus-indica, Ruta chalepensis among others with profound in vivo antiepileptic activities. Rutin ameliorated PTZ-kindling in KA-induced seizure upon intraperitoneal (IP) administration. It was devoid of significant anticonvulsant activity against PTZ and MES-induced seizure models (at 800 mg/kg) when administered through the IP route. However, intracerebroventricular administration of rutin suppressed clonic and GTCS in the PTZ-induced model. Thus, the effect on GABA, the glutamate pathway, acetylcholine, glycine, serotonin, and adenosine receptors might be implicated for the observed anticonvulsant activity of rutin. Moreover, the antioxidant activity of rutin may also play a crucial role in its antiepileptic outcome [268]. Quercetin is a flavonoid found in Ajuga integrifolia, Allium sativum, Balanites aegyptica, Nicotiana tabacum, Olea europaea, Opuntia ficus-indica, Ruta chalepensis, and Xanthium stramonium that exhibited noticeable anticonvulsant activities in different seizure models. In the KA-induced seizure model involving BALB/c mice, quercetin recorded lower seizure scores as compared to the negative control group [269]. It also elicited significant anticonvulsant outcomes after 30 and 60 min of administration in psychomotor seizures induced by 6-Hz simulation. In addition, it also prolonged the onset of seizures and reduced the generalized seizure duration in PTZ-induced convulsions in the male Albino rat at a dose of 10 mg/kg. Furthermore, at 20 mg/kg, quercetin amplified the latency of PIC-induced seizures [6].

Fig. 2
figure 2

Bioactive compounds isolated from plants with anticonvulsant/antiepileptic and convulsive activities

Terpenoids with anticonvulsant activities

Monoterpenes

Terpenoids, also known as terpenes or isoprenoids, are naturally occurring compounds derived from isoprene units and predominantly found in all classes of living organisms [270]. Terpenoids are often classified based on the number of carbon atoms or isoprene units (IPU) they possess: monoterpenes (C10, 2 IPU), sesquiterpenes (C15, 3 IPU), diterpenes (C20, 4 IPU), triterpenes (C30, 6 ITU), etc. [271]. Terpenoids in general and monoterpenes specifically are used for the management of CNS disorders including epilepsy. α-Terpineol is monoterpene alcohol obtained from Artemisia afra, Buddleja polystachya, Croton macrostachyus, Ruta chalepensis, and Zingiber officinale. It has shown significant anticonvulsant activity in PTZ and MES-induced seizure models. Albeit, the exact seizure suppression mechanism of α-terpineol is not known yet [268]. Menthol is a monoterpene found in Ruta chalepensis shown to have profound anticonvulsant effects in different animal models. It elicited its antiseizure activity by delaying the onset of clonic and tonic seizures against PTZ-induced convulsions. Moreover, it also suppressed seizures in hippocampal kindled rats. GABAA receptor activation in the hippocampal neurons and thereby inhibition of neuronal excitation (tonic GABAergic inhibition) is believed for the beneficiary effect of menthol against epileptiform [170]. Camphor is monoterpene predominantly found in PMs such as Artemisia afra, Buddleja polystachya, Ruta chalepensis, and Zingiber officinale among others showed significant anticonvulsant activity in different models. Moreover, it served as a pharmacophore for the synthesis of different anticonvulsant agents. In this regard, benzylidene camphor derivatives containing hydrazone, semicarbazones and thiosemicarbazones exhibited significant antiepileptic activity against MES-induced seizures at 30 mg/kg (comparable to phenytoin) with low neurotoxicity [272]. p-cymene is a constituent of Artemisia afra, Croton macrostachyus, Xanthium stramonium and Zingiber officinale possess anticonvulsant activities. It suppressed convulsions induced by PTZ and MES in mice through modulation of GABAergic neurotransmission via GABAA receptor [273, 274]. Citral is another monoterpene found in Zingiber officinale with biological importance for the treatment of CNS malfunction such as epilepsy. It increased the latency time in PTZ-induced seizure in zebrafish larvae model. Its effect is compromised in flumazenil (FMZ) pretreated groups suggesting the contribution of GABAA receptors. Moreover, downregulation of malondialdehyde (MDA)/NO and upregulation of reduced GSH/catalase (CAT) in brain of citral treated groups reiterated its neuroprotective effect [275]. Pulegone is another monoterpene found in Ruta chalepensis that significantly increased the latency of convulsions in PTZ-induced seizure models [276]. Oleuropein is a glycosylated Seco-iridoids that can be predominantly found in Olea europaea [256]. It unveiled substantial anticonvulsant activity against PTZ-induced seizure through avoidance of neuronal damage via attenuation of generation of reactive oxygen species (ROS) in the epileptic brain [161].

Sesquiterpenes and diterpenes

Sesquiterpenes are the other class of terpenoids with potential anticonvulsant activities. β-caryophyllene is a natural sesquiterpene obtained from Artemisia afra, Croton macrostachyus, Xanthium stramonium, and Zingiber officinale. Contrary to its outcome in PTZ-induced convulsions, β-caryophyllene has reduced seizure severity and OS in the KA-induced seizure model. The result revealed the potential of β-caryophyllene to suppress seizure by inhibiting thiobarbituric acid reactive species and elevating non-protein thiol levels in the KA model [277]. Diterpenes and their derivatives are among the single compounds that demonstrated relevant antiseizure activities in animal models. Phytol is a component of Artemisia afra, Buddleja polystachya, Jatropha curcas, etc. It reduced SE and PLC-induced convulsions by targeting neurotransmitters other than the GABAergic system [268]. 6-GIN, major constituent of Zingiber officinale rhizome, is a diterpenoid with potent anticonvulsant activity. It exerted dose-dependent antiepileptic activity against PTZ-induced hyperlocomotion seizure in the zebrafish larvae model. Its anticonvulsant activity is partly associated with the restoration balance between GABA & GLU neurotransmission in the epileptic brain [168].

Triterpenes

Triterpenoids are a diverse class of phytochemicals with potential CNS effects such as memory enhancement, ameliorating of depression, suppression of epilepsy, etc. Borneol is a triterpenoid found in Artemisia afra, Ruta chalepnesis, Xanthium stramonium, and Zingiber officinale with the ability to alleviate ES in different animal models. It produced an enhanced time of onset of clonic seizures in PTZ-kindled mice. Moreover, the PTZ-kindling was counteracted by borneol as manifested by the decrease in lipid peroxidation (LPO) levels, increased superoxide dismutase (SOD), GSH, CAT levels [278]. Carvacrol, a triterpenoid found in Ruta chalepnesis, suppressed the onset of clonic seizure in the same model at relatively higher doses. These phytoconstituents showed antiepileptic activities after deactivation of GABAA receptor by FMZ, suggesting the involvement of GABAergic neurotransmission in containing seizures through indirect activation of BZP site of GABAA-BZP receptors [279]. Citronellol is also another class of triterpenoid found in different MPs including Zingiber officinale. Inhibition of neuronal excitability through voltage-dependent Na+ channels is the proposed mechanism for the antiepileptic activity of citronellol. Moreover, it also activates the GABAA receptor and thereby foster GABA neurotransmission in the rat brain [280]. Eugenol is a triterpenoid obtained from Artemisia afra. At 100 mg/kg, eugenol suppressed SE and related mortality in PLC-induced SD rats. The involvement of voltage-gated Na+ channel in the anticonvulsant activity of eugenol was proved by its weakened effect upon pre-administration of the Na+ channel antagonist, riluzole [281]. Linalool is found in Croton macrostachyus, Ruta chalepensis and Zingiber officinale. It suppressed quinolic acid (QA)-induced seizure (via NMDA antagonism), delayed NMDA-induced convulsions, increase latency onset and duration of clonic seizures in the PTZ-kindling model. The later seizure model also proved the involvement of a wide array of mechanisms despite glutamate blockage [268]. Ursolic acid is a pentacyclic triterpenoid obtained found in Buddleja polystachya. It has a profound anticonvulsant activity possibly by modulating the non-BZP sites of the GABAA receptor. In addition, it also showed an anticonvulsant effect in MES- and 6 Hz-induced seizure models through activation of the GABAergic pathway [282]. Lupeol is a triterpenoid found in Carissa edulis, Croton macrostachyus, Jatropha curcas, Maytenus heterophylla, Nicotiana tabacum, Sida rhombifolia, Xanthium stramonium, etc. It has shown anticonvulsant activities against PTZ and MES-induced seizure models. Lupeol has increased the mean onset of myoclonic jerks/spasms and differentially protected the mice against mortality [172].

Proconvulsive phytoconstituents of medicinal plants

At this point, it is worthy to mention that some phytoconstituents have convulsive activity (vigorous jerking of the body and loss of consciousness). Crude extracts or essential oils of some MPs can induce seizure upon systemic or topical administration. Phytoconstituents such as eucalyptol and camphor have shown a significant convulsive effect [283]. For instance, one teaspoon of camphor oil taken orally (by a 3 year child) induced GTCS and respiratory depression within 20 min. On the other hand, eucalyptol induced convulsions characterized by the development of long-term SE and showed developmental delay for at least four years following the event [284]. Thus, attention should be given to antiepileptic MPs which contain camphor (Artemisia afra, Buddleja polystachya, Ruta chalepensis, and Zingiber officinale) and eucalyptol (Artemisia afra) when used by THs to manage the convulsive effect and long-term side-effects. Extensive research could be conducted to determine the tolerable dose which can delimit the protective and convulsive outcomes of camphor and eucalyptol. Overall, the anticonvulsant activities of phytoconstituents included in Table 5 signifies the therapeutic potential of the antiepileptic MPs and the importance of evidence-based phytochemical screening to maximize the benefit of MPs and bring about new AEDs of plant origin.

Conclusion

Plants have a central role in the traditional medicinal folklore of Ethiopia. Around 96 PS which belong to 43 families were reported for the treatment of epilepsy and related symptoms in different parts of Ethiopia. A portion of these PS was also used for the same purpose in Africa, the Middle East, Asia, and Latin America. The pharmacological activities of nearly one-third of the MPs claimed by the THs for attenuation of seizure in Ethiopia and other parts of the globe were verified by in vivo experiments using different animal and seizure models. The experimentally proved anticonvulsant activities of MPs have presented the importance of indigenous knowledge and the existing traditional healthcare system in the management of epilepsy in different countries, especially in Ethiopia. A strong association between traditional herbal formulations and pharmacological activities of antiepileptic MPs has been established. Yet, the vast majority of the MPs documented in the present review were not screened for their anticonvulsant activities. In addition, the in vivo experiments conducted elsewhere on the target MPs are shallow and not insightful as far as the MOA of crude extracts, solvent fractions, and EOs are concerned. Furthermore, the in vivo pharmacological experiments (anticonvulsant activities) were not accompanied by isolation and characterization of bioactive phytoconstituents responsible for the antiepileptic MPs. Overall, the majority of the PS documented in this review require additional investigation on pharmacological activities, potential targets and mechanism of seizure attenuation, isolation and characterization of bioactive compounds, and toxicological analysis to validate the significance of MPs to tackle epilepsy-associated comorbidities and mortalities.

Availability of data and materials

Not applicable.

Abbreviations

AMP:

Aminophylline

AEDs:

Antiepileptic drugs

AEMNAs:

Antiepileptic medications non-adherences

AQ:

Aqueous

BIC:

Bicuculline

BU:

Butanol

CAT:

Catalase

CNS:

Central nervous system

CH:

Chloroform

CAMs:

Complementary and alternative medicines

ET:

Ethanolic

ES:

Epileptic seizures

FMZ:

Flumazenil

GTCS:

Generalized tonic clonic seizures

GLU:

Glutamine

GSK-3:

Glycogen synthase kinase-3

HET:

Hydroalcoholic/hydroethanolic

HME:

Hydromethanolic

IP:

Intraperitoneal

INH:

Isonicotinic hydrazide acid

IPU:

Isoprene units

KA:

Kainic acid

LPO:

Lipid peroxidation

LMICs:

Low- and middle-income countries

MDA:

Malondialdehyde

MES:

Maximal electroshock

MOA:

Mechanism of action

MPs:

Medicinal plants

ME:

Methanolic

NCAM:

National center for complementary and alternative medicines

NMDA:

N-methyl-D-aspartate

OS:

Oxidative stress

PE:

Petroleum ether

PIC:

Picrotoxin

PLC:

Pilocarpine

PS:

Plant species

PTZ:

Pentylenetetrazol

QOL:

Quality of life

QA:

Quinolic acid

ROS:

Reactive oxygen species

GSH:

Reduced glutathione

SNNP:

Southern nations nationalities and peoples

SE:

Status epilepticus

STR:

Strychnine

SOD:

Superoxide dismutase

THS:

Traditional healers

FDA:

United States Food and Drug Administration

TM:

Traditional medicine

VPA:

Valproic acid

WHO:

World Health Organization and GABA, γ-aminobutyric acid

References

  1. Chipiti T, Viljoen AM, Cordero-Maldonado ML, Veale CGL, Van Heerden FR, Sandasi M, Chen W, Crawford AD, Enslin GM. Anti-seizure activity of African medicinal plants: the identification of bioactive alkaloids from the stem bark of Rauvolfia caffra using an in vivo zebrafish model. J Ethnopharmacol. 2021;279:114282.

    Article  CAS  PubMed  Google Scholar 

  2. Muhigwa A, Preux P-M, Gérard D, Marin B, Boumediène F, Ntamwira C, Tsai C-H. Comorbidities of epilepsy in low and middle-income countries: systematic review and meta-analysis. Sci Rep. 2020;10(1):9015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tao G, Auvrez C, Nightscales R, Barnard S, McCartney L, Malpas CB, Perucca P, Chen Z, Adams S, McIntosh A, et al. Association between psychiatric comorbidities and mortality in epilepsy. Neurol Clin Pract. 2021;11(5):429–37.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lin C-H, Hsieh C-L. Chinese herbal medicine for treating epilepsy. Front Neurosci. 2021;15(798):195.

    Google Scholar 

  5. Obese E, Biney RP, Henneh IT, Adakudugu EA, Anokwah D, Agyemang LS, Woode E, Ameyaw EO. The anticonvulsant effect of hydroethanolic leaf extract of Calotropis procera (Ait) R Br (Apocynaceae). Neural Plast. 2021;2021:5566890.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Akyuz E, Paudel YN, Polat AK, Dundar HE, Angelopoulou E. Enlightening the neuroprotective effect of quercetin in epilepsy: from mechanism to therapeutic opportunities. Epilepsy Behav. 2021;115:107701.

    Article  PubMed  Google Scholar 

  7. Kumar R, Arora R, Sarangi SC, Ganeshan NS, Agarwal A, Kaleekal T, Gupta YK. Pharmacodynamic and pharmacokinetic interactions of hydroalcoholic leaf extract of Centella asiatica with valproate and phenytoin in experimental models of epilepsy in rats. J Ethnopharmacol. 2021;270:113784.

    Article  CAS  PubMed  Google Scholar 

  8. Kaur J, Famta P, Famta M, Mehta M, Satija S, Sharma N, Vyas M, Khatik GL, Chellappan DK, Dua K, et al. Potential anti-epileptic phytoconstituents: an updated review. J Ethnopharmacol. 2021;268:113565.

    Article  CAS  PubMed  Google Scholar 

  9. Yazie TS, Kefale B, Molla M. Treatment outcome of epileptic patients receiving antiepileptic drugs in Ethiopia: a systematic review and meta-analysis. Behav Neurol. 2021;2021:5586041.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Melkamu P, Animut Y, Minyihun A, Atnafu A, Yitayal M. Cost of Illness of epilepsy and associated factors in patients attending adult outpatient department of University of Gondar referral hospital Northwest Ethiopia. Risk Manag Healthc Policy. 2021;14:2385.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Allers K, Essue BM, Hackett ML, Muhunthan J, Anderson CS, Pickles K, Scheibe F, Jan S. The economic impact of epilepsy: a systematic review. BMC Neurol. 2015;15(1):245.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fokoua AR, Ndjenda MK, Kaptué Wuyt A, Tatsinkou Bomba FD, Dongmo AK, Chouna R, Nkeng-Efouet PA, Nguelefack TB. Anticonvulsant effects of the aqueous and methanol extracts from the stem bark of Psychotria camptopus verdc (Rubiacaea) in rats. J Ethnopharmacol. 2021;272:113955.

    Article  CAS  PubMed  Google Scholar 

  13. Kambli L, Bhatt LK, Oza M, Prabhavalkar K. Novel therapeutic targets for epilepsy intervention. Seizure. 2017;51:27–34.

    Article  PubMed  Google Scholar 

  14. Perucca E. The pharmacological treatment of epilepsy: recent advances and future perspectives. Acta Epileptol. 2021;3(1):22.

    Article  Google Scholar 

  15. Mishra P, Sinha JK, Rajput SK. Efficacy of cicuta virosa medicinal preparations against pentylenetetrazole-induced seizures. Epilepsy Behav. 2021;115:107653.

    Article  PubMed  Google Scholar 

  16. Aourz N, Serruys A-SK, Chabwine JN, Balegamire PB, Afrikanova T, Edrada-Ebel R, Grey AI, Kamuhabwa AR, Walrave L, Esguerra CV, et al. Identification of as a potential therapeutic entry point for epilepsy. ACS Chem Neurosci. 2019;10(4):1992–2003.

    Article  CAS  PubMed  Google Scholar 

  17. Guery D, Rheims S. Clinical management of drug resistant epilepsy: a review on current strategies. Neuropsychiatr Dis Treat. 2021;17:2229.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Farrukh MJ, Makmor-Bakry M, Hatah E, Tan HJ. Use of complementary and alternative medicine and adherence to antiepileptic drug therapy among epilepsy patients: a systematic review. Patient Prefer Adherence. 2018;12:2111.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Faheem M, Ameer S, Khan AW, Haseeb M, Raza Q, Ali Shah F, Khusro A, Aarti C, Umar Khayam Sahibzada M, El-Saber Batiha G, et al. A comprehensive review on antiepileptic properties of medicinal plants. Arabian J Chem. 2022;15(1):103478.

    Article  Google Scholar 

  20. Hasiso TY, Desse TA. Adherence to treatment and factors affecting adherence of epileptic patients at Yirgalem general hospital, Southern Ethiopia: a prospective cross-sectional study. PLoS ONE. 2016;11(9):e0163040.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Catalao R, Eshetu T, Tsigebrhan R, Medhin G, Fekadu A, Hanlon C. Implementing integrated services for people with epilepsy in primary care in Ethiopia: a qualitative study. BMC Health Serv Res. 2018;18(1):372–372.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boling W, Means M, Fletcher A. Quality of life and stigma in epilepsy, perspectives from selected regions of Asia and Sub-Saharan Africa. Brain Sci. 2018;8(4):59.

    Article  PubMed Central  Google Scholar 

  23. Tilahun M, Habte N, Mekonnen K, Srahbzu M, Ayelegne D. Nonadherence to antiepileptic medications and its determinants among epileptic patients at the university of gondar referral hospital, Gondar, Ethiopia, 2019: an institutional-based cross-sectional study. Neurol Res Int. 2020;2020:8886828–8886828.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Belayneh Z, Mekuriaw B. A systematic review and meta-analysis of anti-epileptic medication non-adherence among people with epilepsy in Ethiopia. Arch Pub Health. 2020;78(1):23.

    Article  Google Scholar 

  25. Gwedela MNV, Terai H, Lampiao F, Matsunami K, Aizawa H. Anti-seizure effects of medicinal plants in Malawi on pentylenetetrazole-induced seizures in zebrafish larvae. J Ethnopharmacol. 2022;284:114763.

    Article  CAS  PubMed  Google Scholar 

  26. Anand P, Othon GC, Sakadi F, Tassiou NR, Hamani ABD, Bah AK, Allaramadji BT, Barry DN, Vogel A, Cisse FA, et al. Epilepsy and traditional healers in the Republic of Guinea: a mixed methods study. Epilepsy Behav. 2019;92:276–82.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Amare A, Zenebe G, Hammack J, Davey G. Status epilepticus: clinical presentation, cause, outcome, and predictors of death in 119 Ethiopian patients. Epilepsia. 2008;49(4):600–7.

    Article  PubMed  Google Scholar 

  28. Tigistu M, Azale T, Kebebe H, Yihunie T. Frequency of seizure attack and associated factors among patients with epilepsy at University of Gondar referral hospital: a cross-sectional study, Gondar, North West Ethiopia, 2017. BMC Res Notes. 2018;11(1):652.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mesraoua B, Kissani N, Deleu D, Elsheikh L, Ali M, Melikyan G, Hail HA, Wiebe S, Asadi-Pooya AA. Complementary and alternative medicine (CAM) for epilepsy treatment in the middle east and North Africa (MENA) region. Epilepsy Res. 2021;170:106538.

    Article  PubMed  Google Scholar 

  30. Eshete MA, Molla EL. Cultural significance of medicinal plants in healing human ailments among Guji semi-pastoralist people, Suro Barguda District, Ethiopia. J Ethnobiol Ethnomed. 2021;17(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sharifi-Rad J, Quispe C, Herrera-Bravo J, Martorell M, Sharopov F, Tumer TB, Kurt B, Lankatillake C, Docea AO, Moreira AC, et al. A Pharmacological perspective on plant-derived bioactive molecules for epilepsy. Neurochem Res. 2021;46(9):2205–25.

    Article  CAS  PubMed  Google Scholar 

  32. Tolossa K, Debela E, Athanasiadou S, Tolera A, Ganga G, Houdijk JGM. Ethno-medicinal study of plants used for treatment of human and livestock ailments by traditional healers in South Omo, Southern Ethiopia. J Ethnobiol Ethnomed. 2013;9(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mahomoodally MF. Traditional medicines in Africa an appraisal of ten Potent African medicinal plants. Evid-Based Compl Altern Med 2013;2013:617459.

    Google Scholar 

  34. Kefelegn GA, Desta B. Ximenia americana: economic importance, medicinal value, and current status in Ethiopia. Sci World J. 2021;2021:8880021–8880021.

    Article  Google Scholar 

  35. Abebe BA, Chane Teferi S. Ethnobotanical Study of medicinal plants used to treat human and livestock ailments in hulet Eju Enese Woreda, East Gojjam Zone of Amhara Region. Ethiopia Evid Based Compl Altern Med. 2021;2021:6668541.

    Google Scholar 

  36. Kebebew M, Mohamed E, Meyer-Rochow V. knowledge and use of traditional medicinal animals in the Arba Minch Zuriya District, Gamo Zone Southern Ethiopia. Eur J Therap. 2021;27(2):158–68.

    Article  Google Scholar 

  37. Karunamoorthi K, Hailu T. Insect repellent plants traditional usage practices in the Ethiopian malaria epidemic-prone setting: an ethnobotanical survey. J Ethnobiol Ethnomed. 2014;10(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Birhan YS. Traditional zootherapeutic prescriptions employed in the management of neurological and related disorders in Ethiopia. Acta Ecol. Sinica 2022. https://doi.org/10.1016/j.chnaes.2022.09.007. (In Press)

    Article  Google Scholar 

  39. Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM: Medicinal plants with traditional healthcare importance to manage human and livestock ailments in Enemay District, Amhara Region, Ethiopia. Acta Ecol. Sinica In Press. 2022. https://doi.org/10.1016/j.chnaes.2022.05.004.

  40. Birhan Y, Kitaw S, Alemayehu Y, Mengesha N. Ethnoveterinary medicinal plants and practices in Enarj Enawga district, East Gojjam zone, Amhara region, Ethiopia. Int J Anim Sci. 2018;2(1):1014.

    Google Scholar 

  41. Teklehaymanot T. Ethnobotanical study of knowledge and medicinal plants use by the people in Dek Island in Ethiopia. J Ethnopharmacol. 2009;124(1):69–78.

    Article  PubMed  Google Scholar 

  42. Alemneh D. Ethnobotanical study of plants used for human ailments in Yilmana Densa and quarit districts of West Gojjam Zone, Amhara Region Ethiopia. BioMed Res Int. 2021;2021:6615666.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Asmerom D, Kalay TH, Araya TY, Desta DM, Wondafrash DZ, Tafere GG. Medicinal plants used for the treatment of erectile dysfunction in Ethiopia: a systematic review. BioMed Res Int. 2021;2021:6656406.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Assen Y, Woldearegay M, Haile A. An ethnobotanical study of medicinal plants in Kelala District, south wollo zone of Amhara region, Northeastern Ethiopia. Evid Based Compl Altern Med. 2021;2021:6651922.

    Google Scholar 

  45. Mesfin F, Demissew S, Teklehaymanot T. An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia. J Ethnobiol Ethnomed. 2009;5(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hassen A, Muche M, Muasya AM, Tsegay BA. Exploration of traditional plant-based medicines used for livestock ailments in northeastern Ethiopia. S Afr J Bot. 2022;146:230–42.

    Article  Google Scholar 

  47. Kassa Z, Asfaw Z, Demissew S. An ethnobotanical study of medicinal plants in Sheka zone of Southern Nations Nationalities and Peoples regional state, Ethiopia. J Ethnobiol Ethnomed. 2020;16(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mengistu M, Kebede D, Atomsa D, Abebe A, Alemnie D. Status and utilization of medicinal and aromatic plants in eastern Hararghe, Ethiopia. Cogent Food Agric. 2019;5(1):1701349.

    Article  Google Scholar 

  49. Kidane L, Gebremedhin G, Beyene T. Ethnobotanical study of medicinal plants in Ganta Afeshum District, Eastern zone of tigray, northern Ethiopia. J Ethnobiol Ethnomed. 2018;14(1):64.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kebede E, Mengistu M, Serda B. Ethnobotanical knowledge of pastoral community for treating livestock diseases in Somali regional state, eastern Ethiopia. Trop Anim Health Prod. 2018;50(6):1379–86.

    Article  PubMed  Google Scholar 

  51. Demie G, Negash M, Awas T. Ethnobotanical study of medicinal plants used by indigenous people in and around Dirre Sheikh Hussein heritage site of South-eastern Ethiopia. J Ethnopharmacol. 2018;220:87–93.

    Article  PubMed  Google Scholar 

  52. Wubetu M, Abula T, Dejenu G. Ethnopharmacologic survey of medicinal plants used to treat human diseases by traditional medical practitioners in Dega Damot district, Amhara, Northwestern Ethiopia. BMC Res Notes. 2017;10(1):157.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Atnafu H, Awas T, Alemu S, Wube S. Ethnobotanical study of medicinal plants in Selale mountain ridges, North Shoa. Ethiopia Int J Biodiver. 2018;2(6):567–77.

    Google Scholar 

  54. Abrhaley A, Leta S. Medicinal value of camel milk and meat. J Appl Anim Res. 2018;46(1):552–8.

    Article  CAS  Google Scholar 

  55. Gemechu EC. Assessment of indigenous knowledge of medicinal plants used for livestock treatment in five selected kebeles of Kersa District, Jimma Zone South Western Ethiopia. J Sci Agri. 2021;5:49–54.

    Article  Google Scholar 

  56. Osman A, Sbhatu DB, Giday M. Medicinal plants used to manage human and livestock ailments in Raya Kobo District of Amhara regional state Ethiopia. Evid Based Compl Altern Med. 2020;2020:1329170.

    Google Scholar 

  57. Muluye AB, Ayicheh MW. Medicinal plants utilized for hepatic disorders in Ethiopian traditional medical practices: a review. Clin Phytosci. 2020;6(1):52.

    Article  Google Scholar 

  58. Berhanu M, Tintagu T, Fentahun S, Giday M. Ethnoveterinary survey of medicinal plants used for treatment of animal diseases in Ambo district of Oromia regional state of Ethiopia. Evid Based Compl Altern Med. 2020;2020:8816227.

    Google Scholar 

  59. Tefera BN, Kim Y-D. Ethnobotanical study of medicinal plants in the Hawassa Zuria District, Sidama zone, Southern Ethiopia. J Ethnobiol Ethnomed. 2019;15(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Andarge E, Shonga A, Agize M, Tora A. Utilization and conservation of medicinal plants and their associated indigenous knowledge (IK) in Dawuro Zone: An ethnobotanical approach. Int J Med Plant Res. 2015;4:330–7.

    Google Scholar 

  61. Chekole G. Ethnobotanical study of medicinal plants used against human ailments in Gubalafto District, Northern Ethiopia. J Ethnobiol Ethnomed. 2017;13(1):55.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mesfin F, Seta T, Assefa A. An ethnobotanical study of medicinal plants in Amaro Woreda. Ethiopia Ethnobot Res Appl. 2014;12:341–54.

    Article  Google Scholar 

  63. Teklehaymanot T. An ethnobotanical survey of medicinal and edible plants of Yalo Woreda in Afar regional state, Ethiopia. J Ethnobiol Ethnomed. 2017;13(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Asfaw A, Lulekal E, Bekele T, Debella A, Abebe A, Degu S. Ethnobotanical investigation on medicinal plants traditionally used against human ailments in Ensaro District, North Shewa Zone, Amhara regional state. Ethiopia. 2021. https://doi.org/10.21203/rs.3.rs-720404/v1.

    Article  Google Scholar 

  65. Yineger H, Kelbessa E, Bekele T, Lulekal E. Ethnoveterinary medicinal plants at Bale mountains national park. Ethiopia J Ethnopharmacol. 2007;112(1):55–70.

    Article  PubMed  Google Scholar 

  66. Abera B. Medicinal plants used in traditional medicine by Oromo people, Ghimbi District, Southwest Ethiopia. J Ethnobiol Ethnomed. 2014;10(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Siraj J, Belew SY, Suleman S. Ethnobotanical assessment and physicochemical properties of commonly used medicinal plants in Jimma zone, Southwest Ethiopia: traditional healers based cross-sectional study. J Exp Pharmacol. 2020;12:665–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tassew G. Ethnobotanical study of medicinal plants in Borecha Woreda, Buno Bedele Zone Southwestern Ethiopia. Int J Sci Res. 2019;8(9):1484–98.

    Google Scholar 

  69. Yineger H, Kelbessa E, Bekele T, Lulekal E. Plants used in traditional management of human ailments at bale mountains national park Southeastern Ethiopia. J Med Plants Res. 2013;2(6):132–53.

    Google Scholar 

  70. Agize M, Asfaw Z, Nemomissa S, Gebre T. Ethnobotany of traditional medicinal plants and associated indigenous knowledge in Dawuro Zone of southwestern Ethiopia. J Ethnobiol Ethnomed. 2022;18(1):48.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lulekal E, Asfaw Z, Kelbessa E, Van Damme P. Ethnomedicinal study of plants used for human ailments in Ankober District, North Shewa Zone, Amhara Region, Ethiopia. J Ethnobiol Ethnomed. 2013;9(1):63.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Assefa T, Nigussie N, Mullualem D, Sinshaw G, Adimasu Y. The role of medicinal plants in traditional medicine in Adwa District, tigray northern Ethiopia Asian. J Plant Sci. 2019;3(3–4):1–11.

    Google Scholar 

  73. Seifu T, Asres K, Gebre-Mariam T. Ethnobotanical and ethnopharmaceutical studies on medicinal plants of Chifra District, Afar region north eastern Ethiopia. Ethiop Pharm J. 2006;24:41–58.

    Article  Google Scholar 

  74. Tahir M, Gebremichael L, Beyene T, Van Damme P. Ethnobotanical study of medicinal plants in Adwa District, central zone of tigray regional state, Northern Ethiopia. J Ethnobiol Ethnomed. 2021;17(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Flatie T, Gedif T, Asres K, Gebre-Mariam T. Ethnomedical survey of Berta ethnic group Assosa Zone, Benishangul-Gumuz regional state, mid-west Ethiopia. J Ethnobiol Ethnomed. 2009;5(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Khan MA, Agize M, Shonga A, Tora A. The utilization and conservation of plants of medicinal value by local traditional medicinal practitioners and the associated indigenous knowledge in dawuro zone of Ethiopia: Northeast Africa—An Ethnobotanical Approach. In: Ozturk M, Hakeem KR, editors. Plant and human health ethnobotany and physiology. Cham: Springer International Publishing; 2018. p. 267–321.

    Chapter  Google Scholar 

  77. Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga district, East Gojjam zone, Amhara region Ethiopia SM. J Med Plant Stud. 2017;1(1):1–9.

    Article  Google Scholar 

  78. Zenebe G, Zerihun M, Solomon Z. An ethnobotanical study of medicinal plants in Asgede Tsimbila District, northwestern tigray Northern Ethiopia. Ethnobot Res Appl. 2012;10:305–20.

    Article  Google Scholar 

  79. Teka A, Asfaw Z, Demissew S, Van Damme P. Medicinal plant use practice in four ethnic communities (Gurage, Mareqo, Qebena, and Silti), south central Ethiopia. J Ethnobiol Ethnomed. 2020;16(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bekele M, Woldeyes F, Lulekal E, Bekele T, Demissew S. Ethnobotanical investigation of medicinal plants in buska mountain range, Hamar district, Southwestern Ethiopia. J Etnobiol Ethnomed. 2022;18(1):60.

    Article  Google Scholar 

  81. Gebru MG, Lulekal E, Bekele T, Demissew S. Use and management practices of medicinal plants in and around mixed woodland vegetation, tigray regional state Northern Ethiopia. Ethnobot Res Appl. 2021;21:1–26.

    Google Scholar 

  82. Jara JS, Girma Z, Selamo MM. Ethnomedicinal study of plants used against human ailments in Aseko District. South East Ethiopia. 2020. https://doi.org/10.21203/rs.3.rs-23592/v1.

    Article  Google Scholar 

  83. Lulekal E, Kelbessa E, Bekele T, Yineger H. An ethnobotanical study of medicinal plants in Mana Angetu District, southeastern Ethiopia. J Ethnobiol Ethnomed. 2008;4(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Parvez N, Yadav S. Ethnopharmacology of single herbal preparations of medicinal plants in Asendabo district, Jimma Ethiopia Indian. J Tradit Knowl. 2010;9(4):724–9.

    Google Scholar 

  85. Maryo M, Nemomissa S, Bekele T. An ethnobotanical study of medicinal plants of the Kembatta ethnic group in Enset-based agricultural landscape of Kembatta Tembaro (KT) Zone, Southern Ethiopia. Asian J Plant Sci Res. 2015;5(7):42–61.

    CAS  Google Scholar 

  86. Akele NA: Vascular plant diversity and ethnobotany of medicinal and wild edible plants in Baso Liben and Debre Elias Districts, East Gojjam Zone of Amhara Region, Northwestern, Ethiopia. PhD Dissertation, Addis Ababa University. 2020. http://213.55.95.56/handle/123456789/22266

  87. Abebe E: Ethnobotanical Study on Medicinal Plants Used by Local Communities in Debark Wereda, North Gondar Zone, Amhara Regional State, Ethiopia. M.Sc. Thesis, Addis Ababa University. 2011. http://etd.aau.edu.et/handle/123456789/4244

  88. Tamrat S: Study of useful plants in and around GATE UDUMA (Traditional Gedeo Homegardens) in Kochere Wereda of Gedeo Zone, SNNPR, Ethiopia: an Ethnobotanical Approach. M.Sc. Thesis, Addis Ababa University. 2011. http://213.55.95.56/handle/123456789/9329

  89. Belayneh A, Bussa NF. Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. J Ethnobiol Ethnomed. 2014;10(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kefalew A, Asfaw Z, Kelbessa E. Ethnobotany of medicinal plants in Ada’a District, East Shewa zone of Oromia regional state, Ethiopia. J Ethnobiol Ethnomed. 2015;11(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Assefa B, Glatzel G, Buchmann C. Ethnomedicinal uses of Hagenia abyssinica (Bruce) JF Gmel among rural communities of Ethiopia. J Ethnobiol Ethnomed. 2010;6(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Enyew A, Asfaw Z, Kelbessa E, Nagappan R. Ethnobotanical study of traditional medicinal plants in and around Fiche District, central Ethiopia. Curr Res J Biol Sci. 2014;6(4):154–67.

    Article  Google Scholar 

  93. Ayalew S, Kebede A, Mesfin A, Mulualem G. Ethnobotanical study of medicinal plants used by agro pastoralist Somali people for the management of human ailments in jeldesa cluster, Dire Dawa administration eastern Ethiopia. J Med Plants Res. 2017;11(9):171–87.

    Article  Google Scholar 

  94. Beyi M. Ethnobotanical investigation of traditional medicinal plants in Dugda District, Oromia Region. SM J Med Plant Stud. 2018;2(1):1007.

    Google Scholar 

  95. Kindie B, Tamiru C, Abdala T. 2021 Ethnobotanical study of medicinal plants and conservation status used to treat human and livestock ailments in Fadis District, Eastern Ethiopia. Int J Homeopath Nat Med. 2021;7(1):7–17.

    Google Scholar 

  96. Kebebew M. Diversity, knowledge and use of medicinal plants in Abay Chomen district, Horo Guduru Wollega zone, Oromia region of Ethiopia. J Med Plants Res. 2017;11(31):480–500.

    Article  Google Scholar 

  97. Ragunathan M, Abay SM. 2009 Ethnomedicinal survey of folk drugs used in Bahirdar Zuria district northwestern Ethiopia Indian. J Trad Knowl. 2009;8(2):281–4.

    Google Scholar 

  98. Yohannis SW, Asfaw Z, Kelbessa E. Ethnobotanical study of medicinal plants used by local people in menz gera midir district, north shewa zone, amhara regional state Ethiopia. J Med Plants Res. 2018;12(21):296–314.

    Article  Google Scholar 

  99. Abebe M. The ethnomedicinal plants used for human ailments at Mojana Wodera District, central Ethiopia. Biodiversitas. 2021;22(10):4676–86.

    Article  Google Scholar 

  100. Masondo NA, Stafford GI, Aremu AO, Makunga NP. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S Afr J Bot. 2019;120:39–64.

    Article  CAS  Google Scholar 

  101. Wubetu M, Sintayehu M, Aeta MA. Ethnobotany of medicinal plants used to treat various mental illnesses in Ethiopia: a systematic review. Asian J Plant Sci Res. 2018;8(1):9–33.

    Google Scholar 

  102. Gebrehiwot M: An Ethnobotanical study of medicinal plants in Seru Wereda, Arsi zone of Oromia Region, Ethiopia. M.Sc. Thesis, Addis Ababa University. 2010 http://213.55.95.56/handle/123456789/6699

  103. Sharma J, Gairola S, Gaur RD, Painuli RM, Siddiqi TO. Ethnomedicinal plants used for treating epilepsy by indigenous communities of sub-Himalayan region of Uttarakhand India. J Ethnopharmacol. 2013;150(1):353–70.

    Article  PubMed  Google Scholar 

  104. Ya’u J, Yaro AH, Abubakar MS, Anuka JA, Hussaini IM. Anticonvulsant activity of Carissa edulis (Vahl) (Apocynaceae) root bark extract. J Ethnopharmacol. 2008;120(2):255–8.

    Article  PubMed  Google Scholar 

  105. Stafford GI, Jäger AK, van Staden J. Activity of traditional South African sedative and potentially CNS-acting plants in the GABA-benzodiazepine receptor assay. J Ethnopharmacol. 2005;100(1):210–5.

    Article  PubMed  Google Scholar 

  106. Tabuti JR, Lye KA, Dhillion S. Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. J Ethnopharmacol. 2003;88(1):19–44.

    Article  CAS  PubMed  Google Scholar 

  107. Stafford GI, Pedersen ME, van Staden J, Jäger AK. Review on plants with CNS-effects used in traditional south African medicine against mental diseases. J Ethnopharmacol. 2008;119(3):513–37.

    Article  PubMed  Google Scholar 

  108. Kigen G, Kipkore W, Wanjohi B, Haruki B, Kemboi J. Medicinal plants used by traditional healers in Sangurur, Elgeyo Marakwet County Kenya. Pharmacognosy Res. 2017;9(4):333–47.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Maria MR, Maria Cristina D, Bucar I, Luís C. Medicinal plants used to treat neurological disorders in West Africa: a case study with Guinea-Bissau flora. Am J Plant Sci. 2012;3(7):1028–36.

    Article  Google Scholar 

  110. Raju SK, Basavanna P, Nagesh H, Shanbhag AD. A study on the anticonvulsant activity of Withania somnifera (Dunal) in albino rats. Natl J Physiol Pharm Pharmacol. 2017;7(1):17.

    Article  CAS  Google Scholar 

  111. Mabaleha MB, Zietsman PC, Wilhelm A, Bonnet SL. ethnobotanical survey of medicinal plants used to treat mental illnesses in the Berea Leribe and Maseru districts of Lesotho. Nat Prod Commun. 2019;14(7):1934578X19864215.

    CAS  Google Scholar 

  112. Augustino S, Gillah PR. Medicinal plants in urban districts of Tanzania: plants, gender roles and sustainable use. Int Forestry Rev. 2005;7(1):44–58.

    Article  Google Scholar 

  113. Govindu S, Adikay S. Evaluation of antiepileptic activity of chloroform extract of Acalypha fruticosa in mice. Pharmacognosy Res. 2014;6(2):108–12.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gopalakrishnan S, Saroja K, Elizabeth JD. Chemical investigation of aerial parts of Acalypha fruticosa forssk. Der Pharma Chemica. 2010;2(5):383–9.

    CAS  Google Scholar 

  115. Focho D, Ndam W, Fonge B. Medicinal plants of aguambu-bamumbu in the Lebialem highlands, southwest province of Cameroon. Afr J Pharm Pharmacol. 2009;3(1):1–13.

    Google Scholar 

  116. Diallo D, Hveem B, Mahmoud MA, Berge G, Paulsen BS, Maiga A. An ethnobotanical survey of herbal drugs of Gourma district Mali. Pharm Biol. 1999;37(1):80–91.

    Article  Google Scholar 

  117. Tounekti T, Mahdhi M, Khemira H. Ethnobotanical study of indigenous medicinal plants of Jazan region, Saudi Arabia. Evid Based Compl Altern Med. 2019;2019:3190670.

    Google Scholar 

  118. Gumisiriza H, Birungi G, Olet EA, Sesaazi CD. Medicinal plant species used by local communities around Queen Elizabeth national park, maramagambo central forest reserve and ihimbo central forest reserve, south western Uganda. J Ethnopharmacol. 2019;239:111926.

    Article  PubMed  Google Scholar 

  119. Ruth L, Manani Solomon D. Ethnobotanical survey and propagation of some endangered medicinal plants from south Nandi district of Kenya. J Anim Plant Sci. 2010;8(3):1016–43.

    Google Scholar 

  120. Gupta N, Vishnoi G, Wal A, Wal P. Medicinal value of Euphorbia tirucalli. Syst Rev Pharm. 2013;4(1):40.

    Article  Google Scholar 

  121. Auditeau E, Chassagne F, Bourdy G, Bounlu M, Jost J, Luna J, Ratsimbazafy V, Preux P-M, Boumediene F. Herbal medicine for epilepsy seizures in Asia, Africa and Latin America: a systematic review. J Ethnopharmacol. 2019;234:119–53.

    Article  PubMed  Google Scholar 

  122. Ior L, Otimenyin S, Okwori V, Umar D, Azila J. Ethnobotanical survey of plants used in the management of mental illnesses in some selected local government areas of plateau state Nigeria. J Pharmacogn Phytother. 2017;9(10):146–56.

    Article  CAS  Google Scholar 

  123. Chauhan AK, Dobhal MP, Joshi BC. A review of medicinal plants showing anticonvulsant activity. J Ethnopharmacol. 1988;22(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  124. Wahab O. Ethnomedicinal antiepileptic plants used in parts of oyo and osun states Nigeria. J Bot Res Int. 2015;8(4):77–81.

    Google Scholar 

  125. Aguilar-Santamaría L, Tortoriello J. Anticonvulsant and sedative effects of crude extracts of Ternstroemia pringlei and Ruta chalepensis. Phytother Res. 1996;10(6):531–3.

    Article  Google Scholar 

  126. Midaoui ME, Maataoui A, Benbella M, Houssa AA, Labazi N. Ethnobotanical study of some aromatic and medicinal plants in the middle Atlas mountains of Morocco. Nat Prod Commun. 2011;6(10):1934578X1100601011.

    Google Scholar 

  127. Elisabeth T, Esther N, Stéphanie NKJ, Gisèle NNC, Vedekoi J, Elisabeth NB. Anticonvulsant effect of asparagus africanus lam root decoction on pilocarpine-induced temporal lobe epilepsy in white mice (Mus musculus Swiss). World J Adv Res Rev. 2020;8(2):296–306.

    Article  CAS  Google Scholar 

  128. Henry A, Hosagoudar V, Ravikumar K. Ethno-medicobotany of the Southern Western Ghats of India. Ethnobio. Human Welfare 1996;173–180.

  129. Ramathal DC, Ngassapa OD. medicinal plants used by rwandese traditional healers in refugee camps in Tanzania. Pharma Biol. 2001;39(2):132–7.

    Article  Google Scholar 

  130. Adesina S. Studies on some plants used as anticonvulsant in Amerindian and African traditional medicine. Fitoterapia. 1982;53:147–62.

    CAS  Google Scholar 

  131. Kamau LN, Mbaabu PM, Mbaria JM, Gathumbi PK, Kiama SG. Ethnobotanical survey and threats to medicinal plants traditionally used for the management of human diseases in Nyeri County. Kenya: CELLMED; 2016.

    Book  Google Scholar 

  132. Singh B, Singh S, Kishor A, Singh B. Traditional usage of medicinal plants in humans and animals health care and their chemical constituents from hills and valleys of Jammu province, Western Himalaya Indian. J Nat Prod Resour. 2021;12(1):84–100.

    CAS  Google Scholar 

  133. Gerometta E, Grondin I, Smadja J, Frederich M, Gauvin-Bialecki A. A review of traditional uses, phytochemistry and pharmacology of the genus Indigofera. J Ethnopharmacol. 2020;253:112608.

    Article  CAS  PubMed  Google Scholar 

  134. Bolanle O, Oviasogie O, Owolabi O, Akhigbemen A, Obarisiagbon P, Osaigbovo C. Evaluation of the anti-convulsant activity of aqueous leaf extract of Jatropha curcas (Euphorbiaceae) in mice. Trop J Nat Prod Res. 2018;2(11):489–93.

    Article  CAS  Google Scholar 

  135. Kumar K, Shankhdhar PK, Chauhan R. Evaluation of antiepileptic activity of ethanolic extract of populus deltoides leaf in mice. World J Pharma Res. 2017;6(8):923–40.

    Article  CAS  Google Scholar 

  136. Sharma V, Sinoriya P, Mehta S. Anticonvulsant and CNS Depressant Activity of Methanolic Extracts of Whole Plant of Sida acuta and Sida rhombifolia in Mice. Curr. Res. Pharm Sci. 2013;03(04):148–53.

    Google Scholar 

  137. Sugaya A, Tsuda T, Sugaya E, Takato M, Takamura K. Effect of Chinese medicine „Saiko–Keishi–To” on the abnormal bursting activity of Snail Neurons. Planta Med. 1978;34(07):294–8.

    Article  CAS  PubMed  Google Scholar 

  138. Tugume P, Kakudidi EK, Buyinza M, Namaalwa J, Kamatenesi M, Mucunguzi P, Kalema J. Ethnobotanical survey of medicinal plant species used by communities around Mabira central forest reserve Uganda. J Ethnobiol Ethnomed. 2016;12(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bassoueka DJ, Loufoua BAE, Etou-Ossibi AW, Nsondé-Ntandou GF, Ondelé R, Elion-Itou RDG, Ouamba JM, Abena AA. Plantes anticonvulsivantes du Congo, approche ethnobotanique. Phytothérapie. 2015;13(5):298–305.

    Article  CAS  Google Scholar 

  140. Ngo Bum E, Ngah E, Ngo Mune RM, Ze Minkoulou DM, Talla E, Moto FCO, Ngoupaye GT, Taiwe GS, Rakotonirina A, Rakotonirina SV. Decoctions of Bridelia micrantha and Croton macrostachyus may have anticonvulsant and sedative effects. Epilepsy Behav. 2012;24(3):319–23.

    Article  CAS  PubMed  Google Scholar 

  141. Fan W, Fan L, Peng C, Zhang Q, Wang L, Li L, Wang J, Zhang D, Peng W, Wu C. Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L a review. Molecules. 2019;24(2):359.

    Article  PubMed Central  Google Scholar 

  142. Barker-Haliski M, Steve White H. Validated animal models for antiseizure drug (ASD) discovery: advantages and potential pitfalls in ASD screening. Neuropharmacology. 2020;167:107750.

    Article  CAS  PubMed  Google Scholar 

  143. Morris G, Rowell R, Cunningham M. Limitations of animal epilepsy research models: can epileptic human tissue provide translational benefit? Altex. 2021;38(3):451–62.

    PubMed  Google Scholar 

  144. Castañeda R, Cáceres A, Velásquez D, Rodríguez C, Morales D, Castillo A. Medicinal plants used in traditional mayan medicine for the treatment of central nervous system disorders: an overview. J Ethnopharmacol. 2022;283:114746.

    Article  PubMed  Google Scholar 

  145. Garba K, Yaro AH. Ya’u J: Anticonvulsant effects of ethanol stem bark extract of Lannea barteri (Anacardiaceae) in mice and chicks. J Ethnopharmacol. 2015;172:227–31.

    Article  CAS  PubMed  Google Scholar 

  146. Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav. 2015;52:308–18.

    Article  PubMed  Google Scholar 

  147. Johan Arief MF, Choo BKM, Yap JL, Kumari Y, Shaikh MF. A Systematic review on non-mammalian models in epilepsy research. Front Pharmacol. 2018;9:655–655.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bertoncello KT, Bonan CD. Zebrafish as a tool for the discovery of anticonvulsant compounds from botanical constituents. Eur J Pharmacol. 2021;908:174342.

    Article  CAS  PubMed  Google Scholar 

  149. Getaneh Y: Anticonvulsant activity of 80% methanol extract and solvent fractions of Ajuga integrifolia Buch Ham (Lamiaceae) leaves in mice MSc Thesis Addis Ababa University 2020. http://etd.aau.edu.et/handle/123456789/26377

  150. Olatunji SY, Ogunnaike PO, Owolabi JO, Abijo AZ, Alabi A, Adelodun ST, Olanrewaju JA, Adelabi A. Investigating the effects of allium sativum on the prefrontal cortex in lithium chloride pilocarpine-induced epilepsy in wistar rat. Nig J Neurosci. 2021;12(2):56–66.

    Article  Google Scholar 

  151. Kediso TE, Tolessa T, Getachew F, Makonnen E, Seifu D. Effect of 70% ethanol extract and its solvent fractions of Artemisia afra (Jacq. Ex Willd.) against pentylenetetrazole-induced seizure in mice. Evid Based Compl Altern Med. 2021;2021:6690965–6690965.

    Google Scholar 

  152. Kumar G, Rai DV. Effect of valproic acid and Azadirachta indica on behavioral alterations and antioxidative stress in pentylenetetrazol-induced kindling in rats. Ann Gen Psychiatry. 2008;7(1):S257.

    Article  Google Scholar 

  153. Dixit R, Patil PR. Alcoholic extract of Azadirachta indica (Neem) root has no anticonvulsant activity in rodents. Natl J Physiol Pharm Pharmacol. 2018;8(8):1171–4.

    Article  Google Scholar 

  154. Kasture SB, Gupta SC, Kotecha M. Anticonvulsant activity of Balanites aegyptiaca (L) del stem bark. Orient Pharm Exp Med. 2014;14(1):25–9.

    Article  Google Scholar 

  155. Agedew T, Nedi T, Umer S, Shibeshi W. Anticonvulsant activity of 80% methanol leaf extract and solvent fractions of Buddleja polystachya fresen (Buddlejaceae) in mice. Ethiop Pharm J. 2021;36(2):121–30.

    Article  Google Scholar 

  156. Ya’u J, Yaro AH, Malami S, Musa MA, Abubakar A, Yahaya SM, Chindo BA, Anuka JA, Hussaini IM. Anticonvulsant activity of aqueous fraction of Carissa edulis root bark. Pharma Biol. 2015;53(9):1329–38.

    Article  Google Scholar 

  157. Kediso TE, Tolessa T, Getachew F, Makonnen E, Seifu D. Evaluation of hydro-alcoholic extract of Clerodendrum myricoides (hochst Vatke) leaves and its solvent fractionsin pentylenetetrazole-induced convulsion in mice. J Compl Altern Med Res. 2020;10(3):1–10.

    Google Scholar 

  158. Salile SS, Abula T. In vitro and in vivo anticonvulsant effect of hydroalcoholic extracts of Clutia abyssinica in mice model. J Compl Altern Med Res. 2021;13(4):8–14.

    Google Scholar 

  159. Mureka EW: Evaluation of anticonvulsant activity of extracts and isolates from Maytenus Heterophylla M.Sc. Thesis, Maseno University 2017. https://repository.maseno.ac.ke/handle/123456789/1250

  160. Tsyvunin V, Shtrygol S, Prokopenko Y, Georgiyants V, Blyznyuk N. Influence of dry herbal extracts on pentylenetetrazole-induced seizures in mice screening results and relationship “chemical composition pharmacological effect. ScienceRise Pharma Sci. 2016;1:18–28.

    Article  Google Scholar 

  161. Asgharzade S, Rabiei Z, Rabiei S, Bijad E, Rafieian-Kopaei M. Therapeutic effects of oleuropein in improving seizure, oxidative stress and cognitive disorder in pentylenetetrazole kindling model of epilepsy in mice. Iran J Pharm Res. 2020;19(1):98–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Fisseha N, Shibeshi W, Bisrat D. Evaluation of anticonvulsant activity of 80% methanolic root bark extract and solvent fractions of Pentas schimperiana (A Rich) Vatke (Rubiaceae) in swiss albino mice. Adv Pharmacol Pharmaceut Sci. 2021;2021:6689879.

    CAS  Google Scholar 

  163. Hussien Y: Evaluation of anticonvulsant activity of aqueous and 80% methanol extract of Pterolobium stellatum (Forssk) in Swiss albino mice. MSc Thesis, Addis Ababa University, 2020. http://213.55.95.56/handle/123456789/24641?show=full

  164. Gonzalez-Trujano ME, Carrera D, Ventura-Martinez R, Cedillo-Portugal E, Navarrete A. Neuropharmacological profile of an ethanol extract of Ruta chalepensis L in mice. J Ethnopharmacol. 2006;106(1):129–35.

    Article  CAS  PubMed  Google Scholar 

  165. Adeyemi OO, Akindele AJ, Yemitan OK, Aigbe FR, Fagbo FI. Anticonvulsant, anxiolytic and sedative activities of the aqueous root extract of Securidaca longepedunculata Fresen. J Ethnopharmacol. 2010;130(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  166. Abubakar U, Danmallam U, Ibrahim H, Maiha B. Anticonvulsant activity of aqueous stem bark extract of Securidaca longipedunculata Fresen (Polygalaceae). Dutse J Pure Appl Sci. 2020;6(2):277–86.

    Google Scholar 

  167. Kumar KS, Rajkapoor B. Evaluation of anti-epileptic activity of Xanthium strumarium L. Pharmacologyonline. 2010;2:850–5.

    Google Scholar 

  168. Gawel K, Kukula-Koch W, Banono NS, Nieoczym D, Targowska-Duda KM, Czernicka L, Parada-Turska J, Esguerra CV. 6-Gingerol, a major constituent of Zingiber officinale rhizoma, exerts anticonvulsant activity in the Pentylenetetrazole-induced seizure model in larval zebrafish. Int J Mol Sci. 2021;22(14):7745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hosseini A, Mirazi N. Acute administration of ginger (Zingiber officinale rhizomes) extract on timed intravenous pentylenetetrazol infusion seizure model in mice. Epilepsy Res. 2014;108(3):411–9.

    Article  CAS  PubMed  Google Scholar 

  170. Zhang X-B, Jiang P, Gong N, Hu X-L, Fei D, Xiong Z-Q, Xu L, Xu T-L. A-type GABA receptor as a central target of TRPM8 agonist menthol. PLoS ONE. 2008;3(10):e3386.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Sills GJ, Brodie MJ. Antiepileptic drugs | preclinical drug development in epilepsy. In: Schwartzkroin PA, editor. Encyclopedia of basic epilepsy research. Oxford: Academic Press; 2009. p. 97–103.

    Chapter  Google Scholar 

  172. Muhammad KJ, Jamil S, Basar N, Garba M. Anticonvulsant studies on the isolated compounds from the leaves of Scurrula parasitica L (Loranthaceae). Mal J Fund Appl Sci. 2019;15(6):806–10.

    Google Scholar 

  173. Hosseini A, Mirazi N. Alteration of pentylenetetrazole-induced seizure threshold by chronic administration of ginger (Zingiber officinale) extract in male mice. Pharma Biol. 2015;53(5):752–7.

    Article  CAS  Google Scholar 

  174. Ng’uni T, Klaasen JA, Fielding BC. Acute toxicity studies of the South African medicinal plant Galenia africana. Toxicol Rep. 2018;5:813–8.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Mekonen K, Afework M, Makonnen E, Debela A, Ergete W, Tolessa T. Evaluation of acute and sub-acute toxicity of aqueous extracts of Artemisia afra leaves on brain, heart and suprarenal glands in swiss albino mice. Ethiop J Health Sci. 2020;30(6):981–90.

    PubMed  PubMed Central  Google Scholar 

  176. Braga TM, Rocha L, Chung TY, Oliveira RF, Pinho C, Oliveira AI, Morgado J, Cruz A. Azadirachta indica a juss in vivo toxicity-an updated review. Molecules. 2021;26(2):252.

    Article  CAS  PubMed Central  Google Scholar 

  177. Getahun A, Kifle ZD, Ambikar D, Atnafie SA. In vivo evaluation of 80% methanolic leaves crude extract and solvent fractions of buddleja polystachya fresen (buddlejaceae) for wound healing activity in normal and diabetic mice. Metab Open. 2021;11:100110.

    Article  CAS  Google Scholar 

  178. Hu Z, Feng R, Xiang F, Song X, Yin Z, Zhang C, Zhao X, Jia R, Chen Z, Li L. Acute and subchronic toxicity as well as evaluation of safety pharmacology of Eucalyptus oil-water emulsions. Int J Clin Exp Med. 2014;7(12):4835.

    PubMed  PubMed Central  Google Scholar 

  179. Loha M, Mulu A, Abay SM, Ergete W, Geleta B. Acute and subacute toxicity of methanol extract of Syzygium guineense leaves on the histology of the liver and kidney and biochemical compositions of blood in rats. Evid Based Compl Altern Med. 2019;2019:5702159.

    Google Scholar 

  180. da Silva G, Taniça M, Rocha J, Serrano R, Gomes E, Sepodes B, Silva O. In vivo anti-inflammatory effect and toxicological screening of Maytenus heterophylla and Maytenus senegalensis extracts. Hum Exp Toxicol. 2011;30(7):693–700.

    Article  PubMed  Google Scholar 

  181. Andjani HN, Sentosa Y, Yati K, Fauzantoro A, Gozan M, Yoo YJ. Acute oral toxicity test of Nicotiana tabacum L bio-oil against female winstar rats. IOP Conf Ser Earth Environ Sci. 2019;353(1):012047.

    Article  Google Scholar 

  182. Kebede S, Afework M, Debella A, Ergete W, Makonnen E. Toxicological study of the butanol fractionated root extract of Asparagus africanus Lam on some blood parameter and histopathology of liver and kidney in mice. BMC Res Notes. 2016;9(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Fisseha N, Hammeso WW, Nureye D. Anticonvulsant activity of hydro alcoholic extract and solvent fractions of Biophytum umbraculum welw syn (Oxalidaceae) root in mice. J Exp Pharmacol. 2022;14:291–9.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Gebrehiwot S. Evaluation of acute and sub-acute toxicity of hydro-alcoholic extract of Capparis tomentosa Lam in swiss albino mice. J Sci Innov Res. 2018;7(3):60–3.

    Article  Google Scholar 

  185. Patel SB, Rao NJ, Hingorani LL. Safety assessment of Withania somnifera extract standardized for withaferin a: acute and sub-acute toxicity study. J Ayurveda Integr Med. 2016;7(1):30–7.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Muluye RA, Berihun AM, Gelagle AA, Lemmi WG, Assamo FT, Gemeda HB, Fekadu N, Getnet SD, woldekidanHirpasa S, TesfayeAyele K. Evaluation of in vivo antiplasmodial and toxicological effect of Calpurnia aurea, Aloe debrana, Vernonia amygdalina and Croton macrostachyus extracts in mice. Med Chem. 2021;11:534.

    Google Scholar 

  187. Ngulde SI, Sandabe UK, Tijjani MB, Barkindo AA, Hussaini IM. Phytochemical constituents, antimicrobial screening and acute toxicity studies of the ethanol extract of Carissa edulis vahl root bark in rats and mice. Am J Res Commun. 2013;1(9):99–110.

    Google Scholar 

  188. Ugwah-Oguejiofor CJ, Okoli CO, Ugwah MO, Umaru ML, Ogbulie CS, Mshelia HE, Umar M, Njan AA. Acute and sub-acute toxicity of aqueous extract of aerial parts of Caralluma dalzielii N E brown in mice and rats. Heliyon. 2019;5(1):e01179.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Alene M, Abdelwuhab M, Belay A, Yazie TS. Evaluation of antidiabetic activity of Ajuga integrifolia (Lamiaceae) root extract and solvent fractions in mice. Evid Based Compl Altern Med. 2020;2020:6642588.

    Google Scholar 

  190. Lawal B, Shittu OK, Oibiokpa FI, Mohammed H, Umar SI, Haruna GM. Antimicrobial evaluation, acute and sub-acute toxicity studies of Allium sativum. J Acute Dis. 2016;5(4):296–301.

    Article  Google Scholar 

  191. Qureshi S, Ageel AM, Al-Yahya MA, Tariq M, Mossa JS, Shah AH. Preliminary toxicity studies on ethanol extracts of the aerial parts of Artemisia abyssinica and a inculta in mice. J Ethnopharmacol. 1990;28(2):157–62.

    Article  CAS  PubMed  Google Scholar 

  192. Kane NF, Kyama MC, Nganga JK, Hassanali A, Diallo M, Kimani FT. Acute toxicity effect of Artemisia afra plant extracts on the liver, kidney, spleen and in vivo antimalarial assay on swiss albino mice. Adv Biosci Bioeng. 2019;7(4):64.

    Google Scholar 

  193. Alamrew E, Abebe G. Acute toxicity evaluation of water extract stem barks of Balanites aegyptiaca on adults of three different fish species. J Toxicol Environ Health Sci. 2019;11(2):9–15.

    Article  Google Scholar 

  194. Kefe A, Giday M, Mamo H, Erko B. Antimalarial properties of crude extracts of seeds of Brucea antidysenterica and leaves of Ocimum lamiifolium. BMC Compl Altern Med. 2016;16(1):118.

    Article  Google Scholar 

  195. Osseni R, Akoha S, Adjagba M, Azonbakin S, Lagnika L, Awede B, Bigot A, Diouf A, Darboux R, Lalèyè A. In vivo toxicological assessment of the aqueous extracts of the leaves of Carissa edulis (Apocynaceae) in wistar rats. Eur J Med Plants. 2016;15(1):1–10.

    Article  Google Scholar 

  196. Tamiru W, Engidawork E, Asres K. Evaluation of the effects of 80% methanolic leaf extract of Caylusea abyssinica (fresen) fisch & mey on glucose handling in normal glucose loaded and diabetic rodents. BMC Compl Altern Med. 2012;12(1):151.

    Article  Google Scholar 

  197. Kebede H, Afework M, Makonnen E, Ergete W, Urga K. The effect of Clerodendrum myricoides aqueous extract on blood, liver and kidney tissues of mice. Momona Ethiop J Sci. 2011;3(2):48–63.

    Article  Google Scholar 

  198. Bantie L, Gebeyehu E. Antidiabetic activity of hydroalcoholic extract of the root of Croton macrostachys in streptozotocin induced diabetic mice. World J Pharm Sci. 2015;3(2):185–91.

    Google Scholar 

  199. Ayza MA, Rajkapoor B, Wondafrash DZ, Berhe AH. Protective effect of Croton macrostachyus (euphorbiaceae) stem bark on cyclophosphamide-induced nephrotoxicity in rats. J Exp Pharmacol. 2020;12:275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Araya EM, Adamu BA, Periasamy G, Sintayehu B, Gebrelibanos Hiben M. In vivo hepatoprotective and In vitro radical scavenging activities of Cucumis ficifolius a rich root extract. J Ethnopharmacol. 2019;242:112031.

    Article  PubMed  Google Scholar 

  201. Deyno S, Tola MA, Bazira J, Makonnen E, Alele PE. Acute and repeated-dose toxicity of Echinops kebericho Mesfin essential oil. Toxicol Rep. 2021;8:131–8.

    Article  CAS  PubMed  Google Scholar 

  202. Deyno S, Abebe A, Tola MA, Hymete A, Bazira J, Makonnen E, Alele PE. Acute and sub-acute toxicity of Echinops kebericho decoction in rats. BMC Compl Med Therapies. 2020;20(1):2.

    Article  Google Scholar 

  203. Zewdu M, Seyoum G, Makonnen E. Effect of acute and chronic treatment of the 80% Ethanolic fruit extract of Embelia schimperi on blood, liver and kidney of rats. Ethiop Pharm J. 2016;32(2):101–16.

    Article  Google Scholar 

  204. Alemu BK, Misganaw D. Antimalarial activity of Fagaropsis angolensis (Rutaceae) crude extracts and solvent fractions of its stem bark against Plasmodium berghei in mice. J Exp Pharmacol. 2020;12:683.

    Article  CAS  PubMed  Google Scholar 

  205. Tanira MOM, Shah AH, Mohsin A, Ageel AM, Qureshi S. Pharmacological and toxicological investigations on Foeniculum vulgare dried fruit extract in experimental animals. Phytother Res. 1996;10(1):33–6.

    Article  CAS  Google Scholar 

  206. Widiastuti H, Primaharinastiti P, Prihatiningtyas S. Toxicity test from Gloriosa superba leaves extract in rats (rattus novegicus). Int J Pharm Pharm Sci. 2014;6(5):183–7.

    Google Scholar 

  207. Mekonnen B, Asrie AB, Wubneh ZB. Antidiarrheal activity of 80% methanolic leaf extract of Justicia schimperiana. Evid Based Compl Altern Med. 2018;2018:3037120.

    Google Scholar 

  208. Ambikar D, Tsegaw A, Belayneh YM. Wound healing activity of 80% methanolic crude extract and solvent fractions of the leaves of Justicia schimperiana (Hochst ex Nees) T Anderson (Acanthaceae) in mice. J Exp Pharmacol. 2022;14:167.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Malebo HM, Wiketye V, Katani SJ, Kitufe NA, Nyigo VA, Imeda CP, Ogondiek JW, Sunguruma R, Mhame PP, Massaga JJ, et al. In vivo antiplasmodial and toxicological effect of Maytenus senegalensis traditionally used in the treatment of malaria in Tanzania. Malaria J. 2015;14(1):79.

    Article  Google Scholar 

  210. Haule EE, Moshi MJ, Nondo RSO, Mwangomo DT, Mahunnah RLA. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model. BMC Res Notes. 2012;5(1):546.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Goshu BT. Evaluation of toxic effect of hydro-methanolic root extract of Myrica salicifolia A. Rich (Myrica-ceae) on brain, heart, spleen and blood parameters in swiss albino mice. EC Pharmacol Toxicol. 2020;8:01–11.

    Google Scholar 

  212. Guex CG, Reginato FZ, Figueredo KC, da Silva ARHd, Pires FB, Jesus RdS, Lhamas CL, Lopes GHH, Bauermann LdF. Safety assessment of ethanolic extract of Olea europaea L. leaves after acute and subacute administration to Wistar rats. Regul Toxicol Pharmacol. 2018;95:395–9.

    Article  CAS  PubMed  Google Scholar 

  213. Han EH, Lim MK, Lee SH, Rahman MM, Lim Y-H. An oral toxicity test in rats and a genotoxicity study of extracts from the stems of Opuntia ficus-indica var saboten. BMC Compl Altern Med. 2019;19(1):31.

    Article  Google Scholar 

  214. Boukeloua A, Belkhiri A, Djerrou Z, Bahri L, Boulebda N, Pacha YH. Acute toxicity of Opuntia ficus indica and Pistacia lentiscus seed oils in mice. Afr J Tradit Comple Altern Med. 2012;9(4):607–11.

    Article  CAS  Google Scholar 

  215. Dinku T, Tadesse S, Asres K. Antidiabetic activity of the leaf extracts of Pentas schimperiana subsp schimperiana (A Rich) Vatke on alloxan induced diabetic mice. Ethiop Pharm J. 2010. https://doi.org/10.4314/epj.v28i1.2.

    Article  Google Scholar 

  216. Meharie BG, Tunta TA. Evaluation of diuretic activity and phytochemical contents of aqueous extract of the shoot apex of podocarpus falcactus. J Exp Pharmacol. 2020;12:629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Mutuku A, Mwamburi L, Keter L, Ondicho J, Korir R, Kuria J, Chemweno T, Mwitari P. Evaluation of the antimicrobial activity and safety of Rhus vulgaris (Anacardiaceae) extracts. BMC Compl Med Therap. 2020;20(1):272.

    Article  CAS  Google Scholar 

  218. Nguta JM. In vivo antimalarial activity, toxicity, and phytochemical composition of total extracts from Securidaca longepedunculata Fresen (polygalaceae). Biomed Biotechnol Res J. 2019;3(3):196.

    Google Scholar 

  219. Luciana DSNR, Gabriela TD, Edla JRCEG, Micaelly DSO, Andressa BL, Kardilndia MDO, Otemberg SC, Josu DAR, Alexandre RDP, Janine AP. Acute toxicity evaluation of ethanolic extract of the air parts of Sida rhombifolia L in wistar rats Afr. J Pharm Pharmacol. 2019;13(14):181–7.

    Google Scholar 

  220. Assam Jp A, Dzoyem JP, Pieme CA, Penlap VB. In vitro antibacterial activity and acute toxicity studies of aqueous-methanol extract of Sida rhombifolia Linn (Malvaceae). BMC Compl Altern Med. 2010;10(1):40.

    Article  Google Scholar 

  221. Sireeratawong S, Lertprasertsuke N, Srisawat U, Thuppia A, Ngamjariyawat A, Suwanlikhid N, Jaijoy K. Acute and subchronic toxicity study of the water extract from root of Sida rhombifolia Linn in rats Songklanakarin J. Sci. Technol. 2008;30(6):729-737.

  222. Nyangacha R, Gathirwa J, Muthaura C, Mungai G, Mwikwabe N, Ondicho J, Moindi E, Omar S, Rukunga G, Maranga R. Antimalarial activity and toxicity evaluation of Kenyan Hugonia castaneifolia Engl Teclea nobilis Del and Turraea mombassana C DC. Afr J Health Sci. 2012;23(4):305–15.

    Google Scholar 

  223. Legba B, Dougnon V, Deguenon E, Agbankpe J, Senou M, Aniambossou A, Gbaguidi C, Sintondji K, Baba-Moussa L, Dougnon J. Toxicological characterization of six plants of the Beninese pharmacopoeia used in the treatment of Salmonellosis. J Toxicol. 2019;2019:3530659.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Idang EO, Yemitan OK, Mbagwu HO, Udom GJ, Ogbuagu EO, Udobang JA. Toxicological assessment of Zingiber officinale Roscoe (Ginger) root oil extracts in Albino rats. Toxicol Digest. 2019;4(1):108–19.

    Google Scholar 

  225. Bhide RM, Bethapudi B, Chalichem NSS, Nithyanantham M, Murugan SK, Mundkinajeddu D. Acute and subchronic toxicity study of flavonoid rich extract of <i>Glycyrrhiza glabra</i> (GutGard®) in sprague dawley rats. J Toxicol. 2022;2022:8517603.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Manekeng HT, Mbaveng AT, Ntyam Mendo SA, Agokeng A-JD, Kuete V. Evaluation of acute and subacute toxicities of Psidium guajava methanolic bark extract: a botanical with in vitro antiproliferative potential. Evid Based Compl Altern Med. 2019;2019:8306986.

    Google Scholar 

  227. Abera T, Ashebir R, Basha H, Debebe E, Abebe A, Meresa A, Woldekidan S. Phytochemical-constituents, safety and efficacy of commonly used medicinal plants for the treatment of malaria in Ethiopia-a review. Pharm Pharmacol Int J. 2019;7(6):284–95.

    Article  Google Scholar 

  228. Abebe MS, Asres K, Bekuretsion Y, Woldekidan S, Sisay B, Seyoum G. Prenatal developmental toxicity and histopathological changes of the placenta induced by Syzygium guineense leaf extract in rats. J Toxicol. 2022;2022:5209136.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Adane F, Asres K, Ergete W, Woldekidan S, Seyoum G. The developmental toxicity of Thymus schimperi essential oil in rat embryos and fetuses. J Toxicol. 2022;2022:4091839.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Animaw Z, Asres K, Tadesse S, Basha H, Taye S, Abebe A, Debebe E, Seyoum G. Teratogenic evaluation of 80% ethanol extract of Embelia schimperi vatke fruits on rat embryo and fetuses. J Toxicol. 2022;2022:4310521.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Abebe M, Asres K, Bekuretsion Y, Woldkidan S, Debebe E, Seyoum G. Teratogenic effect of high dose of Syzygium guineense (Myrtaceae) leaves on wistar albino rat embryos and fetuses. Evid Based Compl Altern Med. 2021;2021:6677395.

    Google Scholar 

  232. Belete S, Asres K, Bekuretsion Y, Ashebir R, Abebe MS, Seyoum G. Toxic effect of Khat in rat embryos and fetuses. BioMed Res Int. 2021;2021:9933389.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Pferschy-Wenzig E-M, Bauer R. The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav. 2015;52:344–62.

    Article  PubMed  Google Scholar 

  234. Ryan M. Cannabidiol in epilepsy: the indications and beyond. Ment Health Clin. 2020;10(6):317–25.

    Article  PubMed  PubMed Central  Google Scholar 

  235. He L-Y, Hu M-B, Li R-L, Zhao R, Fan L-H, He L, Lu F, Ye X, Huang Y-l, Wu C-J. Natural medicines for the treatment of epilepsy: bioactive components Pharmacology and Mechanism. Front Pharmacol. 2021;12(28):604040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ullah MA, Gul FZ, Khan T, Bajwa MN, Drouet S, Tungmunnithum D, Giglioli-Guivarc’h N, Liu C, Hano C, Abbasi BH. Differential induction of antioxidant and anti-inflammatory phytochemicals in agitated micro-shoot cultures of Ajuga integrifolia Buch Ham ex D Don with biotic elicitors. AMB Express. 2021;11(1):137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. El-Saber Batiha G, Magdy Beshbishy A, Wasef G, Elewa L, YHA A, Al-Sagan A, Abd El-Hack ME, Taha Abd-Elhakim AEM, Prasad Devkota YH. Chemical constituents and pharmacological activities of garlic (Allium sativum L) A review. Nutrients. 2020;12(3):872.

    Article  PubMed Central  Google Scholar 

  238. More G, Lall N, Hussein A, Tshikalange TE. Antimicrobial constituents of Artemisia afra Jacq ex willd against periodontal pathogens. Evid Based Compl Altern Med. 2012;2012:252758.

    Google Scholar 

  239. Falowo AB, Mukumbo FE, Muchenje V. Phytochemical constituents and antioxidant activity of Artemisia afra and Bidens pilosa essential oil in ground pork. J Essent Oil-Bear Plants. 2019;22(1):176–86.

    Article  CAS  Google Scholar 

  240. Pandey IP, Ahmed S, Chhimwal SL, Pandey S. Chemical composition and wound healing activity of volatile oil of leaves of Azadirachta indica A. Juss. Adv Pure Appl Chem. 2012;1:2167–0854.

    Google Scholar 

  241. Khamis G, Saleh AM, Habeeb TH, Hozzein WN, Wadaan MAM, Papenbrock J, AbdElgawad H. Provenance effect on bioactive phytochemicals and nutritional and health benefits of the desert date Balanites aegyptiaca. J Food Biochem. 2020;44(6):e13229.

    Article  CAS  PubMed  Google Scholar 

  242. Getahun A, Kifle ZD, Ambikar D, Atnafie SA. In vivo evaluation of 80% methanolic leaves crude extract and solvent fractions of Buddleja polystachya fresen (buddlejaceae) for wound healing activity in normal and diabetic mice. Metab Open. 2021;11:100110–100110.

    Article  CAS  Google Scholar 

  243. El-Gamal A, Al-Massarani S, Fawzy G, Ati H, Al-Rehaily A, Basudan O, Abdel-Kader M, Tabanca N, Becnel J. Chemical composition of Buddleja polystachya aerial parts and its bioactivity against Aedes aegyptica. Nat Prod Res. 2018;32(23):2775–82.

    Article  CAS  PubMed  Google Scholar 

  244. Ati HYA, Gamal AAE, Fawzy GA. Chemical composition, in vitro antimicrobial and cytotoxic activities of Buddleja polystachya essential oils. J Essent Oil-Bear Plants. 2014;17(6):1112–9.

    Article  Google Scholar 

  245. Al-youssef H, Hassan WH. Phytochemical and biological studies of the aerial parts of Carissa edulis growing in Saudi Arabia. Biosci Biotechnol Res Asia. 2016;7(2):635–46.

    Google Scholar 

  246. Kaunda JS, Zhang Y-J. The genus Carissa: an ethnopharmacological, phytochemical and pharmacological review. Nat Prod Bioprospect. 2017;7(2):181–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Meresa A, Ashebir R, Gemechu W, Teka F, Basha H, Abebe A, Debebe E, Samuel W. Kidan Tadele A Ethno medicinal uses, phytochemistry and anti-malarial effect of Croton macrostachyus (Bisana): a review. J Med Plants Stud. 2019;7:79–88.

    Google Scholar 

  248. Tariku Y, Hymete A, Hailu A, Rohloff J. Constituents, antileishmanial activity and toxicity profile of volatile oil from berries of Croton macrostachyus. Nat Prod Commun. 2010;5(6):975–80.

    CAS  PubMed  Google Scholar 

  249. Gebrehiwot H, Zelelew D, Gebremariam A. Chemical Analysis and Medicinal Activities of Volatile Components from the Seeds of Croton Macrostachyus. Int J Sci Basic Appl Res. 2018;37:316–30.

    Google Scholar 

  250. Adeosun TE, Ogunwande IA, Avoseh ON, Raji I, Lawal OA. Composition and anti-inflammatory activity of essential oil of Jatropha curcas. Nat Prod Commun. 2017;12(3):439–40.

    PubMed  Google Scholar 

  251. Bastos-Cavalcante N, Rodrigues dos Santos-Barbosa C, Silva-Pereira RL, Feitosa-Muniz D, de Melo-Coutinho HD, Araújo-Rolim L, da Silva Almeida JRG. Phytochemical analysis, antibacterial activity and antibiotic modifying action of Jatropha mollissima (Pohl.) Baill. (Euphorbiaceae). Anales de Biología. 2020;22:85–94.

    Article  Google Scholar 

  252. Vega-Ruiz YC, Hayano-Kanashiro C, Gámez-Meza N, Medina-Juárez LÁ. Determination of chemical constituents and antioxidant activities of leaves and stems from Jatropha cinerea (Ortega) Müll Arg and Jatropha cordata (Ortega) Müll. Arg Plants. 2021;10:212.

    Article  CAS  PubMed  Google Scholar 

  253. Murayama T, Eizuru Y, Yamada R, Sadanari H, Matsubara K, Rukung G, Tolo FM, Mungai GM, Kofi-Tsekpo M. Anticytomegalovirus activity of pristimerin, a triterpenoid quinone methide isolated from Maytenus heterophylla (Eckl & Zeyh). Antiviral Chem Chemother. 2007;18(3):133–9.

    Article  CAS  Google Scholar 

  254. Yang C, Xie S-N, Ni L, Du Y-M, Liu S, Li M-Y, Xu K. Chemical Constituents from Nicotiana tabacum L and their antifungal activity. Nat Prod Commun. 2021;16(11):11059578.

    Google Scholar 

  255. Zou X, Bk A, Rauf A, Saeed M, Al-Awthan YS, Al-Duais A, Bahattab M, Hamayoon O, Khan M, Suleria HAR. Screening of polyphenols in Tobacco (Nicotiana tabacum) and determination of their antioxidant activity in different Tobacco varieties. ACS Omega. 2021;6(39):25361–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Zaïri A, Nouir S, Zarrouk A, Haddad H, Khélifa A, Achour L. Phytochemical profile cytotoxic antioxidant and allelopathic potentials of aqueous leaf extracts of Olea europaea. Food Sci Nutr. 2020;8(9):4805–13.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Slimen IB, Najar T, Abderrabba M. Opuntia ficus-indica as a source of bioactive and nutritional phytochemicals. J Food Nutr Sci. 2016;4(6):162–9.

    CAS  Google Scholar 

  258. Alotaibi SM, Saleem MS, Al-Humaidi JG. Phytochemical contents and biological evaluation of Ruta chalepennsis L growing in Saudi Arabia. Saudi Pharm J. 2018;26(4):504–8.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Jaradat N, Adwan L, K’aibni S, Zaid AN, Shtaya MJY, Shraim N, Assali M. Variability of chemical compositions and antimicrobial and antioxidant activities of Ruta chalepensis leaf essential oils from three Palestinian regions. BioMed Res Int. 2017;2017:2672689.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Nahar L, El-Seedi HR, Khalifa SAM, Mohammadhosseini M, Sarker SD. Ruta essential oils: composition and bioactivities. Molecules. 2021;26(16):4766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Mah SH, Teh SS, Ee GCL. Anti-inflammatory, anti-cholinergic and cytotoxic effects of Sida rhombifolia. Pharma Biol. 2017;55(1):920–8.

    Article  CAS  Google Scholar 

  262. Khan Y, Shah S, Ullah S. Ethnomedicinal, pharmacological and phytochemical evaluation of Xanthium strumarium L. Int J Biol Sci. 2020;11(7):587.

    Google Scholar 

  263. Kamboj A, Saluja AK. Phytopharmacological review of Xanthium strumarium L (Cocklebur). Int J Green Pharm. 2010;4(3):129–39.

    Article  Google Scholar 

  264. Liu Y, Liu J, Zhang Y. Research progress on chemical constituents of Zingiber officinale roscoe. BioMed Res Int. 2019;2019:5370823.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47–e47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013: 162750.

    Article  Google Scholar 

  267. Diniz TC, Silva JC, Lima-Saraiva SRGd, Ribeiro FPRdA, Pacheco AGM, de Freitas RM, Quintans-Júnior LJ, Quintans JDSS, Mendes RL, Almeida JRGdS. The role of flavonoids on oxidative stress in Epilepsy. Oxid Med Cell Longev. 2015;2015:171756.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Zhu H-L, Wan J-B, Wang Y-T, Li B-C, Xiang C, He J, Li P. Medicinal compounds with antiepileptic/anticonvulsant activities. Epilepsia. 2014;55(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  269. Carmona-Aparicio L, Cárdenas-Rodríguez N, Delgado-Lamas G, Pedraza-Chaverri J, Montesinos-Correa H, Rivera-Espinosa L, Torres-Espíndola LM, Hernández ME, López-Aceves T, Pérez-Lozano DL, et al. Dose-dependent behavioral and antioxidant effects of quercetin and methanolic and acetonic extracts from Heterotheca inuloides on several rat tissues following kainic acid-induced status epilepticus. Oxid Med Cell Longev. 2019;2019:5287507.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? New Phytol. 2018;220(3):692–702.

    Article  PubMed  Google Scholar 

  271. Reyes BAS, Dufourt EC, Ross J, Warner MJ, Tanquilut NC, Leung AB. Chapter 4—selected phyto and marine bioactive compounds alternatives for the treatment of type 2 diabetes. In: Atta R, editor. Studies: Natural Products Chemistry. Amsterdam: Elsevier; 2018.

    Google Scholar 

  272. Angelova V, Karabeliov V, Andreeva-Gateva PA, Tchekalarova J. recent developments of hydrazide/hydrazone derivatives and their analogs as anticonvulsant agents in animal models. Drug Dev Res. 2016;77(7):379–92.

    Article  CAS  PubMed  Google Scholar 

  273. Raza M, Alghasham AA, Alorainy MS, El-Hadiyah TM. Potentiation of valproate-induced anticonvulsant response by Nigella sativa seed constituents: the role of GABA-receptors. Int J Health Sci. 2008;2(1):15–25.

    Google Scholar 

  274. Wang Z-J, Heinbockel T. Essential oils and their constituents targeting the GABAergic system and sodium channels as treatment of neurological diseases. Molecules. 2018;23(5):1061.

    Article  PubMed Central  Google Scholar 

  275. Hacke ACM, Miyoshi E, Marques JA, Pereira RP. Cymbopogon citratus (DC) Stapf, citral and geraniol exhibit anticonvulsant and neuroprotective effects in pentylenetetrazole-induced seizures in zebrafish. J Ethnopharmacol. 2021;275:114142.

    Article  CAS  PubMed  Google Scholar 

  276. Sousa DPD, Nóbrega FFF, Lima MRVd, Almeida RND. Pharmacological activity of (R)-(+)-pulegone, a chemical constituent of essential oils. Z Naturforsch C. 2011;66(7–8):353–9.

    Article  PubMed  Google Scholar 

  277. Oliveira CCD, Oliveira CVD, Grigoletto J, Ribeiro LR, Funck VR, Grauncke ACB, Souza TLD, Souto NS, Furian AF, Menezes IRA, et al. Anticonvulsant activity of β-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy Behav. 2016;56:26–31.

    Article  PubMed  Google Scholar 

  278. Tambe R, Jain P, Patil S, Ghumatkar P, Sathaye S. Antiepileptogenic effects of borneol in pentylenetetrazole-induced kindling in mice Naunyn-Schmiedeberg’s. Arch Pharmacol. 2016;389(5):467–75.

    Article  CAS  Google Scholar 

  279. Quintans-Júnior LJ, Guimarães AG, Araújo BE, Oliveira GF, Santana MT, Moreira FV, Santos MR, Cavalcanti SC, Júnior WL, Botelho MA. Carvacrol, (-)-borneol and citral reduce convulsant activity in rodents. Afr J Biotechnol. 2010;9(39):6566–72.

    Google Scholar 

  280. de Sousa DP, Gonçalves JCR, Quintans-Júnior L, Cruz JS, Araújo DAM, de Almeida RN. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neurosci Lett. 2006;401(3):231–5.

    Article  PubMed  Google Scholar 

  281. Jeong KH, Lee D-S, Kim SR. Effects of eugenol on granule cell dispersion in a mouse model of temporal lobe epilepsy. Epilepsy Res. 2015;115:73–6.

    Article  CAS  PubMed  Google Scholar 

  282. Khan I, Karim N, Ahmad W, Abdelhalim A, Chebib M. GABA-A receptor modulation and anticonvulsant, anxiolytic, and antidepressant activities of constituents from. Evid Based Compl Altern Med. 2016;2016:1215393.

    Google Scholar 

  283. Mathew T, John SK, Kamath V, Kumar RS, Jadav R, Shaji A, Nadig R, Sarma GRK, Parry GJ. Essential oil-related status epilepticus: a small case series study. J Am Coll Emerg Physicians Open. 2020;1(5):918–21.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Bahr TA, Rodriguez D, Beaumont C, Allred K. The effects of various essential oils on epilepsy and acute seizure: a systematic review. Evid Based Compl Med Altern. 2019. https://doi.org/10.1155/2019/6216745.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Mr. Enawgaw Acham Jemberu for drawing the location map of Ethiopia.

Funding

The review did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

YSB collected the relevant works of literature and compiled the review.

Corresponding author

Correspondence to Yihenew Simegniew Birhan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birhan, Y.S. Medicinal plants utilized in the management of epilepsy in Ethiopia: ethnobotany, pharmacology and phytochemistry. Chin Med 17, 129 (2022). https://doi.org/10.1186/s13020-022-00686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13020-022-00686-5

Keywords