Nishizawa Y. Diabetic complication: definition and classification. Nihon Rinsho. 1991;49(Suppl):3–8.
PubMed
Google Scholar
Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010;11(1):31–9.
Article
PubMed
PubMed Central
Google Scholar
Farmer AD, Kadirkamanathan SS, Aziz Q. Diabetic gastroparesis: pathophysiology, evaluation and management. Br J Hosp Med. 2012;73(8):451–6.
Article
Google Scholar
Eledrisi MS, Alshanti MS, Shah MF, Brolosy B, Jaha N. Overview of the diagnosis and management of diabetic ketoacidosis. Am J Med Sci. 2006;331(5):243–51.
Article
PubMed
Google Scholar
Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2(1):16012.
Article
PubMed
Google Scholar
Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.
Article
PubMed
Google Scholar
Zhang Y, Bai R, Liu C, Ma C, Chen X, Yang J, Sun D. MicroRNA single-nucleotide polymorphisms and diabetes mellitus: a comprehensive review. Clin Genet. 2019;95(4):451–61.
Article
CAS
PubMed
Google Scholar
Ghani U. Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: finding needle in the haystack. Eur J Med Chem. 2015;103:133–62.
Article
CAS
PubMed
Google Scholar
George C, Byun A, Howard-Thompson A. New injectable agents for the treatment of type 2 diabetes part 2-glucagon-like peptide-1 (GLP-1) agonists. Am J Med. 2018;131(11):1304–6.
Article
CAS
PubMed
Google Scholar
Nakamura Y, Hasegawa H, Tsuji M, Udaka Y, Mihara M, Shimizu T, Inoue M, Goto Y, Gotoh H, Inagaki M, et al. Diabetes therapies in hemodialysis patients: Dipeptidase-4 inhibitors. World J Diabetes. 2015;6(6):840–9.
Article
PubMed
PubMed Central
Google Scholar
Ho LT, Kulkarni SS, Lee JC. Development of sodium-dependent glucose co-transporter 2 inhibitors as potential anti-diabetic therapeutics. Curr Top Med Chem. 2011;11(12):1476–512.
Article
CAS
PubMed
Google Scholar
Li W, Yuan G, Pan Y, Wang C, Chen H. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: a review. Front Pharmacol. 2017;8:74.
PubMed
PubMed Central
Google Scholar
Bounda GA, Feng YU. Review of clinical studies of Polygonum multiflorum Thunb and its isolated bioactive compounds. Pharmacognosy Res. 2015;7(3):225–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin L, Ni B, Lin H, Zhang M, Li X, Yin X, Qu C, Ni J. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: a review. J Ethnopharmacol. 2015;159:158–83.
Article
CAS
PubMed
Google Scholar
Ham JR, Lee HI, Choi RY, Ryu HS, Yee ST, Kang KY, Lee MK. Heshouwu (Polygonum multiflorum Thunb.) extract attenuates bone loss in diabetic mice. Prev Nutr Food Sci. 2019;24(2):121–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venkatakrishnan K, Chiu H-F, Wang C-K. Popular functional foods and herbs for the management of type-2-diabetes mellitus: a comprehensive review with special reference to clinical trials and its proposed mechanism. J Funct Foods. 2019;57:425–38.
Article
CAS
Google Scholar
Yang D, Zhao J, Liu S, Song F, Liu Z. The screening of potential α-glucosidase inhibitors from the Polygonum multiflorum extract using ultrafiltration combined with liquid chromatography-tandem mass spectrometry. Anal Methods. 2014;6(10):3353–9.
Article
CAS
Google Scholar
Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.
Article
CAS
PubMed
Google Scholar
Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional chinese medicine: Review and assessment. Front Pharmacol. 2019;10:123.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–20.
Article
PubMed
Google Scholar
Liu Z, Guo F, Wang Y, Li C, Zhang X, Li H, Diao L, Gu J, Wang W, Li D, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional chinese medicine. Sci Rep. 2016;6:21146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jing C, Sun Z, Xie X, Zhang X, Wu S, Guo K, Bi H. Network pharmacology-based identification of the key mechanism of Qinghuo Rougan Formula acting on uveitis. Biomed Pharmacother. 2019;120:109381.
Article
CAS
PubMed
Google Scholar
Jiang YB, Zhong M, Long F, Yang RP, Zhang YF, Liu TH. Network pharmacology-based prediction of active ingredients and mechanisms of Lamiophlomis rotata (Benth.) Kudo against rheumatoid arthritis. Front Pharmacol. 2019;10:1435.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daina A, Michielin O, Zoete V. Swiss Target Prediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007;25(2):197–206.
Article
CAS
PubMed
Google Scholar
Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, Zhang R, Zhu J, Ren Y, Tan Y, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020;48(D1):D1031–41.
CAS
PubMed
Google Scholar
Guo X, Ji J, Feng Z, Hou X, Luo Y, Mei Z. A network pharmacology approach to explore the potential targets underlying the effect of sinomenine on rheumatoid arthritis. Int Immunopharmacol. 2020;80:106201.
Article
CAS
PubMed
Google Scholar
Lin HY, Tsai JC, Wu LY, Peng WH. Reveals of new candidate active components in hemerocallis radix and its anti-depression action of mechanism based on network pharmacology approach. Int J Mol Sci. 2020;21(5):1868.
Article
CAS
PubMed Central
Google Scholar
Rosales PF, Marinho FF, Gower A, Chiarello M, Canci B, Roesch-Ely M, Paula FR, Moura S. Bio-guided search of active indole alkaloids from Tabernaemontana catharinensis: Antitumour activity, toxicity in silico and molecular modelling studies. Bioorg Chem. 2019;85:66–74.
Article
CAS
PubMed
Google Scholar
Hsu KC, Chen YF, Lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformat. 2011;12(Suppl 1):S33.
Article
Google Scholar
Song XQ, Zhang Y, Dai EQ, Wang L, Du HT. Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking. Int Immunopharmacol. 2020;80:106179.
Article
CAS
PubMed
Google Scholar
Wang C, Ren Q, Chen X-T, Song Z-Q, Ning Z-C, Gan J-H, Ma X-L, Liang D-R, Guan D-G, Liu Z-L, et al. System pharmacology-based strategy to decode the synergistic mechanism of Zhi-zhu Wan for functional dyspepsia. Front Pharmacol. 2018;9:841.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee SM, Yang H, Tartar DM, Gao B, Luo X, Ye SQ, Zaghouani H, Fang D. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes. Diabetologia. 2011;54(5):1136–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong L, Guo S, Zou Z. Resveratrol ameliorates metabolic disorders and insulin resistance in high-fat diet-fed mice. Life Sci. 2020;242:117212.
Article
PubMed
CAS
Google Scholar
Szkudelski T, Szkudelska K. Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta. 2015;1852(6):1145–54.
Article
CAS
PubMed
Google Scholar
Jeyaraman MM, Al-Yousif NSH, Singh Mann A, Dolinsky VW, Rabbani R, Zarychanski R, Abou-Setta AM. Resveratrol for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2020;1(1):CD011919.
PubMed
Google Scholar
Sadi G, Pektas MB, Koca HB, Tosun M, Koca T. Resveratrol improves hepatic insulin signaling and reduces the inflammatory response in streptozotocin-induced diabetes. Gene. 2015;570(2):213–20.
Article
CAS
PubMed
Google Scholar
Bagul PK, Banerjee SK. Application of resveratrol in diabetes: rationale, strategies and challenges. Curr Mol Med. 2015;15(4):312–30.
Article
CAS
PubMed
Google Scholar
Hong B, Ding X, Jia H, Zhang J. Resveratrol ameliorated gestational diabetes through regulation of AMPKmediated NF-kB signaling pathway. Biomed Res. 2017; 28(8).
Zhou Y, Wang Z, Xu L, Tang H, Wang D, Meng Q. 39 Studies on the antidiabetic activity of apigenin in mice with streptozotocin-induced diabetes. J Investig Med. 2016;64(Suppl 8):A14.
Google Scholar
Wang N, Yi WJ, Tan L, Zhang JH, Xu J, Chen Y, Qin M, Yu S, Guan J, Zhang R. Apigenin attenuates streptozotocin-induced pancreatic beta cell damage by its protective effects on cellular antioxidant defense. Vitro Cell Dev Biol Anim. 2017;53(6):554–63.
Article
CAS
Google Scholar
Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK, Arya DS. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-kappaB-TNF-alpha and TGF-beta1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol. 2017;313(2):F414–22.
Article
CAS
PubMed
Google Scholar
Qin W, Ren B, Wang S, Liang S, He B, Shi X, Wang L, Liang J, Wu F. Apigenin and naringenin ameliorate PKCbetaII-associated endothelial dysfunction via regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose. Vasc Pharmacol. 2016;85:39–49.
Article
CAS
Google Scholar
Alkhalidy H, Moore W, Wang A, Luo J, McMillan RP, Wang Y, Zhen W, Hulver MW, Liu D. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J Nutr Biochem. 2018;58:90–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore W, Alkhalidy H, McMillan R, Zhen W, Wang AH, Liu DM. Small molecule kaempferol prevents type 2 diabetes by promoting insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes. 2014;63:A504–5.
Article
CAS
Google Scholar
Luo C, Yang H, Tang C, Yao G, Kong L, He H, Zhou Y. Kaempferol alleviates insulin resistance via hepatic IKK/NF-kappaB signal in type 2 diabetic rats. Int Immunopharmacol. 2015;28(1):744–50.
Article
CAS
PubMed
Google Scholar
Bhatia J, Bhatia J, Malik S, Suchal K. A17490 Kaempferol ameliorates myocardial injury in diabetic rats by suppressing oxidative stress, inflammation and apoptosis. J Hypertens. 2018;36:E89.
Article
Google Scholar
Bule M, Abdurahman A, Nikfar S, Abdollahi M, Amini M. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chem Toxicol. 2019;125:494–502.
Article
CAS
PubMed
Google Scholar
Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, Yu JQ, Chen Z, Yang Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed Pharmacother. 2019;109:1085–99.
Article
CAS
PubMed
Google Scholar
Peng J, Li Q, Li K, Zhu L, Lin X, Lin X, Shen Q, Li G, Xie X. Quercetin improves glucose and lipid metabolism of diabetic rats: involvement of akt signaling and SIRT1. J Diabetes Res. 2017;2017:3417306.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu T, Lu XY, Shi JJ, Liu XQ, Chen QB, Wang Q, Chen YB, Zhang SJ. Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J Cell Mol Med. 2020;24(6):3449–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhanya R, Arya AD, Nisha P, Jayamurthy P. Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Front Pharmacol. 2017;8:336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Youl E, Bardy G, Magous R, Cros G, Sejalon F, Virsolvy A, Richard S, Quignard JF, Gross R, Petit P, et al. Quercetin potentiates insulin secretion and protects INS-1 pancreatic β-cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol. 2010;161(4):799–814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang JT, Qian LB, Zhang FJ, Wang J, Ai H, Tang LH, Wang HP. Cardioprotective effects of luteolin on ischemia/reperfusion injury in diabetic rats are modulated by eNOS and the mitochondrial permeability transition pathway. J Cardiovasc Pharmacol. 2015;65(4):349–56.
Article
CAS
PubMed
Google Scholar
Su F, Liu SQ, Chen Y, Chen FX, Wang HP, Xia Q. Luteolin reduces cardiac dysfunctions and mitochondrial oxidative stress in streptozotocin-induced diabetic rats. FASEB J. 2010;24:49.
Article
CAS
Google Scholar
Gu JX, Cheng XJ, Luo X, Yang X, Pang YP, Zhang XF, Zhang YY, Liu Y. Luteolin ameliorates cognitive impairments by suppressing the expression of inflammatory cytokines and enhancing synapse-associated proteins GAP-43 and SYN levels in streptozotocin-induced diabetic rats. Neurochem Res. 2018;43(10):1905–13.
Article
CAS
PubMed
Google Scholar
Xu N, Zhang L, Dong J, Zhang X, Chen YG, Bao B, Liu J. Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol Nutr Food Res. 2014;58(6):1258–68.
Article
CAS
PubMed
Google Scholar
Breuss JM, Atanasov AG, Uhrin P. Resveratrol and its effects on the vascular system. Int J Mol Sci. 2019;20(7):1523.
Article
CAS
PubMed Central
Google Scholar
Wang P, Sang S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. BioFactors. 2018;44(1):16–25.
Article
CAS
PubMed
Google Scholar
Huang XT, Li X, Xie ML, Huang Z, Huang YX, Wu GX, Peng ZR, Sun YN, Ming QL, Liu YX, et al. Resveratrol: Review on its discovery, anti-leukemia effects and pharmacokinetics. Chem Biol Interact. 2019;306:29–38.
Article
CAS
PubMed
Google Scholar
Gradolatto A, Basly JP, Berges R, Teyssier C, Chagnon MC, Siess MH, Canivenc-Lavier MC. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab Dispos. 2005;33(1):49–54.
Article
CAS
PubMed
Google Scholar
Zabela V, Sampath C, Oufir M, Moradi-Afrapoli F, Butterweck V, Hamburger M. Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats. Fitoterapia. 2016;115:189–97.
Article
CAS
PubMed
Google Scholar
Barve A, Chen C, Hebbar V, Desiderio J, Saw CL, Kong AN. Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm Drug Dispos. 2009;30(7):356–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 2011;11(4):298–344.
Article
CAS
PubMed
Google Scholar
Yin H, Ma J, Han J, Li M, Shang J. Pharmacokinetic comparison of quercetin, isoquercitrin, and quercetin-3-O-β-D-glucuronide in rats by HPLC-MS. PeerJ. 2019;7:e6665.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen X, Yin OQ, Zuo Z, Chow MS. Pharmacokinetics and modeling of quercetin and metabolites. Pharm Res. 2005;22(6):892–901.
Article
CAS
PubMed
Google Scholar
Lin LC, Pai YF, Tsai TH. Isolation of Luteolin and Luteolin-7-O-glucoside from dendranthema morifolium ramat tzvel and their pharmacokinetics in rats. J Agric Food Chem. 2015;63(35):7700–6.
Article
CAS
PubMed
Google Scholar
Shi F, Pan H, Lu Y, Ding L. An HPLC-MS/MS method for the simultaneous determination of luteolin and its major metabolites in rat plasma and its application to a pharmacokinetic study. J Sep Sci. 2018;41(20):3830–9.
Article
CAS
PubMed
Google Scholar
Dahlman I, Vaxillaire M, Nilsson M, Lecoeur C, Gu HF, Cavalcanti-Proenca C, Efendic S, Ostenson CG, Brismar K, Charpentier G, et al. Estrogen receptor alpha gene variants associate with type 2 diabetes and fasting plasma glucose. Pharmacogenet Genomics. 2008;18(11):967–75.
Article
CAS
PubMed
Google Scholar
Konheim YL, Wolford JK. Association of a promoter variant in the inducible cyclooxygenase-2 gene (PTGS2) with type 2 diabetes mellitus in Pima Indians. Hum Genet. 2003;113(5):377–81.
Article
CAS
PubMed
Google Scholar
Mishra PK, Chavali V, Metreveli N, Tyagi SC. Ablation of MMP9 induces survival and differentiation of cardiac stem cells into cardiomyocytes in the heart of diabetics: a role of extracellular matrix. Can J Physiol Pharmacol. 2012a;90(3):353–60.
Article
CAS
PubMed
Google Scholar
Mishra PK, Chavali V, Metreveli N, Tyagi SC. Targeted deletion of MMP9 mitigates autophagy mediated contractile dysfunction in insulin2 mutant diabetic mice. Circulation. 2012b;126(21):A19387.
Google Scholar
Zhou T, Meng X, Che H, Shen N, Xiao D, Song X, Liang M, Fu X, Ju J, Li Y, et al. Regulation of Insulin Resistance by Multiple MiRNAs via Targeting the GLUT4 Signalling Pathway. Cell Physiol Biochem. 2016;38(5):2063–78.
Article
CAS
PubMed
Google Scholar
Khazaei M, Fallahzadeh AR, Sharifi MR, Afsharmoghaddam N, Javanmard SH, Salehi E. Effects of diabetes on myocardial capillary density and serum angiogenesis biomarkers in male rats. Clinics. 2011;66(8):1419–24.
Article
PubMed
PubMed Central
Google Scholar
Ivanov VV, Shakhristova EV, Stepovaya EA, Nosareva OL, Fedorova TS, Ryazantseva NV, Novitsky VV. Effect of insulin, the glutathione system, and superoxide anion radical in modulation of lipolysis in adipocytes of rats with experimental diabetes. Biochemistry. 2015;80(1):87–96.
CAS
PubMed
Google Scholar
Grahn TH, Kaur R, Yin J, Schweiger M, Sharma VM, Lee MJ, Ido Y, Smas CM, Zechner R, Lass A, et al. Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J Biol Chem. 2014;289(17):12029–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Akash MSH, Rehman K, Liaqat A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J Cell Biochem. 2018;119(1):105–10.
Article
CAS
PubMed
Google Scholar
Moriya J, Ferrara N. Inhibiting the response to VEGF in diabetes. Sci Signal. 2014;7(307):pe1.
Article
PubMed
CAS
Google Scholar
Maiese K. FoxO transcription factors and regenerative pathways in diabetes mellitus. Curr Neurovasc Res. 2015;12(4):404–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorvin CM. The prolactin receptor: diverse and emerging roles in pathophysiology. J Clin Transl Endocrinol. 2015;2(3):85–91.
PubMed
PubMed Central
Google Scholar
Zhu L, Martinez MN, Emfinger CH, Palmisano BT, Stafford JM. Estrogen signaling prevents diet-induced hepatic insulin resistance in male mice with obesity. Am J Physiol Endocrinol Metab. 2014;306(10):E1188–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandoormaal JJ. Linoleic-acid metabolism in diabetes-mellitus. Neth J Med. 1990;37(5–6):207–14.
CAS
Google Scholar
Kelly P, Bailey CL, Fueger PT, Newgard CB, Casey PJ, Kimple ME. Rap1 promotes multiple pancreatic islet cell functions and signals through mammalian target of rapamycin complex 1 to enhance proliferation. J Biol Chem. 2010;285(21):15777–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halushka PV, Mayfield R, Colwell JA. Insulin and arachidonic acid metabolism in diabetes mellitus. Metabolism. 1985;34(12 Suppl 1):32–6.
Article
CAS
PubMed
Google Scholar
Hu Z, Ma C, Liang Y, Zou S, Liu X. Osteoclasts in bone regeneration under type 2 diabetes mellitus. Acta Biomater. 2019;84:402–13.
Article
CAS
PubMed
Google Scholar