WHO. Cardiovascular diseases (CVDs). World Health Organization, 2021. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 11 June 2021.
Hu ST, Gao RL, Liu LS, Zhu ML, Wang W, Wang YJ, et al. Summary of the 2018 report on cardiovasscular diseases in China. Chin Circ J. 2019;034(003):209–20. https://doi.org/10.3969/j.issn.1000-3614.2019.03.001.
Article
Google Scholar
Grundy SM. Consensus statement role of therapy with “Statins” in patients with hypertriglyceridemia. Am J Cardiol. 1998;81(4A):1B-6B. https://doi.org/10.1016/s0002-9149(98)00030-7.
Article
CAS
PubMed
Google Scholar
Jin K, Khonsari S, Gallagher R, Gallagher P, Clark AM, Freedman B, et al. Telehealth interventions for the secondary prevention of coronary heart disease: a systematic review and meta-analysis. Eur J Cardiovasc Nurs. 2019;18(4):260–71. https://doi.org/10.1177/1474515119826510.
Article
PubMed
Google Scholar
Hardin SJ, Singh M, Eyob W, Molnar JC, Homme RP, George AK, et al. Diet-induced chronic syndrome, metabolically transformed trimethylamine-N-oxide, and the cardiovascular functions. Rev Cardiovasc Med. 2019;20(3):121–8. https://doi.org/10.31083/j.rcm.2019.03.518.
Article
PubMed
Google Scholar
Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-U70. https://doi.org/10.1038/nature08821.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamilton MK, Boudry G, Lemay DG, Raybould HE. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol. 2015;308(10):G840–51. https://doi.org/10.1152/ajpgi.00029.2015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082.
Article
PubMed
PubMed Central
Google Scholar
Wu SC, Sun CQ, Li YZ, Wang T, Jia LH, Lai SY, et al. GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Res. 2020;48(D1):D545–53. https://doi.org/10.1093/nar/gkz764.
Article
CAS
PubMed
Google Scholar
Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. https://doi.org/10.1038/s41467-017-00900-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui L, Zhao T, Hu H, Zhang W, Hua X. Association study of gut flora in coronary heart disease through high-throughput sequencing. BioMed Res Int. 2017;2017:3796359. https://doi.org/10.1155/2017/3796359.
Article
PubMed
PubMed Central
Google Scholar
Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb. 2016;23(8):908–21. https://doi.org/10.5551/jat.32672.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emoto T, Yamashita T, Kobayashi T, Sasaki N, Hirota Y, Hayashi T, et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels. 2017;32(1):39–46. https://doi.org/10.1007/s00380-016-0841-y.
Article
PubMed
Google Scholar
Mariat D, Firmesse O, Levenez F, Guimaraes VD, Sokol H, Dore J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:6. https://doi.org/10.1186/1471-2180-9-123.
Article
CAS
Google Scholar
Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science (New York, NY). 2003;299(5615):2074–6. https://doi.org/10.1126/science.1080029.
Article
CAS
Google Scholar
Liao WH, Henneberg M, Langhans W. Immunity-based evolutionary interpretation of diet-induced thermogenesis. Cell Metab. 2016;23(6):971–9. https://doi.org/10.1016/j.cmet.2016.05.002.
Article
CAS
PubMed
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. https://doi.org/10.1038/nature05414.
Article
PubMed
Google Scholar
Rom O, Korach-Rechtman H, Hayek T, Danin-Poleg Y, Bar H, Kashi Y, et al. Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice. Arch Toxicol. 2017;91(4):1709–25. https://doi.org/10.1007/s00204-016-1859-8.
Article
CAS
PubMed
Google Scholar
Poppleton DI, Duchateau M, Hourdel V, Matondo M, Flechsler J, Klingl A, et al. Outer membrane proteome of Veillonella parvula: a Diderm Firmicute of the human microbiome. Front Microbiol. 2017;8:1215. https://doi.org/10.3389/fmicb.2017.01215.
Article
PubMed
PubMed Central
Google Scholar
Dong Y, Cheng H, Liu Y, Xue M, Liang H. Red yeast rice ameliorates high-fat diet-induced atherosclerosis in Apoe(-/-) mice in association with improved inflammation and altered gut microbiota composition. Food Funct. 2019;10(7):3880–9. https://doi.org/10.1039/c9fo00583h.
Article
CAS
PubMed
Google Scholar
Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: metabolism and perspective in obesity. Gut Microbes. 2018;9(4):308–25. https://doi.org/10.1080/19490976.2018.1465157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Yang J, Saffari A, Jacobs J, Baek KI, Hough G, et al. Ambient ultrafine particle ingestion alters gut microbiota in association with increased atherogenic lipid metabolites. Sci Rep. 2017;7:42906. https://doi.org/10.1038/srep42906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nie J, Zhang L, Zhao G, Du X. Quercetin reduces atherosclerotic lesions by altering the gut microbiota and reducing atherogenic lipid metabolites. J Appl Microbiol. 2019;127(6):1824–34. https://doi.org/10.1111/jam.14441.
Article
CAS
PubMed
Google Scholar
Awdeh ZL, Yunis EJ, Audeh MJ, Fici D, Pugliese A, Larsen CE, et al. A genetic explanation for the rising incidence of type 1 diabetes, a polygenic disease. J Autoimmun. 2006;27(3):174–81. https://doi.org/10.1016/j.jaut.2006.08.004.
Article
CAS
PubMed
Google Scholar
Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376. https://doi.org/10.1038/nature18646.
Article
CAS
PubMed
Google Scholar
Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017;5(1):54. https://doi.org/10.1186/s40168-017-0271-9.
Article
PubMed
PubMed Central
Google Scholar
Pallister T, Jackson MA, Martin TC, Glastonbury CA, Jennings A, Beaumont M, et al. Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling. Int J Obes (2005). 2017;41(7):1106–13. https://doi.org/10.1038/ijo.2017.70.
Article
CAS
PubMed Central
Google Scholar
Khan TJ, Ahmed YM, Zamzami MA, Siddiqui AM, Khan I, Baothman OAS, et al. Atorvastatin treatment modulates the gut microbiota of the hypercholesterolemic patients. OMICS. 2018;22(2):154–63. https://doi.org/10.1089/omi.2017.0130.
Article
CAS
PubMed
Google Scholar
Koeth RA, Wang ZE, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. https://doi.org/10.1038/nm.3145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shih DM, Zhu W, Schugar RC, Meng Y, Jia X, Miikeda A, et al. Genetic deficiency of flavin-containing monooxygenase 3 (Fmo3) protects against thrombosis but has only a minor effect on plasma lipid levels-brief report. Arterioscler Thromb Vasc Biol. 2019;39(6):1045–54. https://doi.org/10.1161/atvbaha.119.312592.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang WHW, Wang ZE, Levison BS, Koeth RA, Britt EB, Fu XM, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. https://doi.org/10.1056/NEJMoa1109400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li XSM, Obeid S, Klingenberg R, Gencer B, Mach F, Raber L, et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38(11):814–24. https://doi.org/10.1093/eurheartj/ehw582.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu DX, Shu XO, Rivera ES, Zhang XL, Cai QY, Calcutt MW, et al. Urinary levels of trimethylamine-N-oxide and Incident coronary heart disease: a prospective investigation among urban chinese adults. J Am Heart Assoc. 2019;8(1):14. https://doi.org/10.1161/jaha.118.010606.
Article
CAS
Google Scholar
Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290(9):5647–60. https://doi.org/10.1074/jbc.M114.618249.
Article
CAS
PubMed
Google Scholar
Seldin MM, Meng YH, Qi HX, Zhu WF, Wang ZE, Hazen SL, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappa B. J Am Heart Assoc. 2016. https://doi.org/10.1161/jaha.115.002767.
Article
PubMed
PubMed Central
Google Scholar
Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cell Physiol Biochem. 2017;44(1):152–62. https://doi.org/10.1159/000484623.
Article
PubMed
Google Scholar
Sun XL, Jiao XF, Ma YR, Liu Y, Zhang L, He YZ, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun. 2016;481(1–2):63–70. https://doi.org/10.1016/j.bbrc.2016.11.017.
Article
CAS
PubMed
Google Scholar
Wu P, Chen JN, Chen JJ, Tao J, Wu SY, Xu GS, et al. Trimethylamine N-oxide promotes apoE(-/-) mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway. J Cell Physiol. 2020;235(10):6582–91. https://doi.org/10.1002/jcp.29518.
Article
CAS
PubMed
Google Scholar
Zhu WF, Gregory JC, Org E, Buffa JA, Gupta N, Wang ZN, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24. https://doi.org/10.1016/j.cell.2016.02.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spector R. New insight into the dietary cause of atherosclerosis: implications for pharmacology. J Pharmacol Exp Ther. 2016;358(1):103–8. https://doi.org/10.1124/jpet.116.233296.
Article
CAS
PubMed
Google Scholar
Ding L, Chang MR, Guo Y, Zhang LY, Xue CH, Yanagita T, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018. https://doi.org/10.1186/s12944-018-0939-6.
Article
PubMed
PubMed Central
Google Scholar
de la Cuesta-Zuluaga J, Mueller NT, Alvarez-Quintero R, Velasquez-Mejia EP, Sierra JA, Corrales-Agudelo V, et al. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients. 2019. https://doi.org/10.3390/nu11010051.
Article
Google Scholar
Pluznick JL. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5(2):202–7. https://doi.org/10.4161/gmic.27492.
Article
PubMed
Google Scholar
Chen Y, Xu CF, Huang R, Song JY, Li D, Xia M. Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice. J Nutr Biochem. 2018;56:175–82. https://doi.org/10.1016/j.jnutbio.2018.02.011.
Article
CAS
PubMed
Google Scholar
Aguilar EC, Leonel AJ, Teixeira LG, Silva AR, Silva JF, Pelaez JMN, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NF kappa B activation. Nutr Metab Cardiovasc Dis. 2014;24(6):606–13. https://doi.org/10.1016/j.numecd.2014.01.002.
Article
CAS
PubMed
Google Scholar
Bartolomaeus H, Balogh A, Yakoub M, Homann S, Marko L, Hoges S, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation. 2019;139(11):1407–21. https://doi.org/10.1161/circulationaha.118.036652.
Article
CAS
PubMed
Google Scholar
Gonzalez A, Krieg R, Massey HD, Carl D, Ghosh S, Gehr TWB, et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrol Dial Transplant. 2019;34(5):783–94. https://doi.org/10.1093/ndt/gfy238.
Article
CAS
PubMed
Google Scholar
Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67(7):1269–79. https://doi.org/10.1136/gutjnl-2017-314050.
Article
CAS
PubMed
Google Scholar
Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–54. https://doi.org/10.1136/gutjnl-2014-307913.
Article
CAS
Google Scholar
Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vila AV, Vosa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600. https://doi.org/10.1038/s41588-019-0350-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maji A, Misra R, Dhakan DB, Gupta V, Mahato NK, Saxena R, et al. Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol. 2018;20(1):402–19. https://doi.org/10.1111/1462-2920.14015.
Article
CAS
PubMed
Google Scholar
Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–72. https://doi.org/10.1038/nrmicro3344.
Article
CAS
PubMed
Google Scholar
Gonzalez-Garcia RA, McCubbin T, Navone L, Stowers C, Nielsen LK, Marcellin E. Microbial propionic acid production. Fermentation Basel. 2017. https://doi.org/10.3390/fermentation3020021.
Article
Google Scholar
Staib L, Fuchs TM. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front Microbiol. 2015. https://doi.org/10.3389/fmicb.2015.01116.
Article
PubMed
PubMed Central
Google Scholar
Scott KP, Martin JC, Campbell G, Mayer C-D, Flint HJ. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium Roseburia inulinivorans. J Bacteriol. 2006;188(12):4340–9. https://doi.org/10.1128/jb.00137-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol. 2002;68(10):5186–90. https://doi.org/10.1128/aem.68.10.5186-5190.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD, Newgard CB, et al. Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem. 2010;285(29):22082–90. https://doi.org/10.1074/jbc.M110.117713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci U S A. 2014;111(20):7421–6. https://doi.org/10.1073/pnas.1323599111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cariou B, Chetiveaux M, Zair Y, Pouteau E, Disse E, Guyomarc’h-Delasalle B, et al. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults. Nutr Metab. 2011. https://doi.org/10.1186/1743-7075-8-48.
Article
Google Scholar
Charach G, Argov O, Geiger K, Charach L, Rogowski O, Grosskopf I. Diminished bile acids excretion is a risk factor for coronary artery disease: 20-year follow up and long-term outcome. Ther Adv Gastroenterol. 2017;11:1–11. https://doi.org/10.1177/1756283x17743420.
Article
CAS
Google Scholar
Coleman JP, Hudson LL. Cloning and characterization of a conjugated bile-acid hyrdrolase gene from clostridium-perfringens. Appl Environ Microbiol. 1995;61(7):2514–20. https://doi.org/10.1128/aem.61.7.2514-2520.1995.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Zeng XM, Mo YM, Smith K, Guo YM, Lin J. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl Environ Microbiol. 2012;78(24):8795–802. https://doi.org/10.1128/aem.02519-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shuhaimi M, Ali AM, Saleh NM, Yazid AM. Cloning and sequence analysis of bile salt hydrolase (bsh) gene from Bifidobacterium longum. Biotechnol Lett. 2001;23(21):1775–80. https://doi.org/10.1023/a:1012400518207.
Article
CAS
Google Scholar
Kim GB, Miyamoto CM, Meighen EA, Lee BH. Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Appl Environ Microbiol. 2004;70(9):5603–12. https://doi.org/10.1128/aem.70.9.5603-5612.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stellwag EJ, Hylemon PB. Purification and characterization of bile-salt hydrolase from Bacteroides-fragilis subsp. fragilis. Biochem Biophys Acta. 1976;452(1):165–76. https://doi.org/10.1016/0005-2744(76)90068-1.
Article
CAS
PubMed
Google Scholar
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. https://doi.org/10.1073/pnas.1005963107.
Article
PubMed
PubMed Central
Google Scholar
Song ZW, Cai YY, Lao XZ, Wang X, Lin XX, Cui YY, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome. 2019. https://doi.org/10.1186/s40168-019-0628-3.
Article
PubMed
PubMed Central
Google Scholar
Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225–35. https://doi.org/10.1016/j.cmet.2013.01.003.
Article
CAS
PubMed
Google Scholar
Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 2014;7(1):12–8. https://doi.org/10.1016/j.celrep.2014.02.032.
Article
CAS
PubMed
Google Scholar
Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun. 2013;4:2384. https://doi.org/10.1038/ncomms3384.
Article
CAS
PubMed
Google Scholar
Ou Y, Zhang C, Yao M, Wang L. Gut Flora: novel therapeutic target of Chinese medicine for the treatment of cardiovascular diseases. Evid Based Complement Altern Med eCAM. 2019;2019:3719596. https://doi.org/10.1155/2019/3719596.
Article
Google Scholar
Wang AL, Xu H, Chen KY. Exploration on theory of stasis toxic in coronary heart disease from gut microbiota and its metabolite. Chin J Integr Tradit West Med. 2020;40(04):490–2. https://doi.org/10.7661/J.Cjim.20200113.093.
Article
Google Scholar
Li ZY, Chen MS. Natural medicines reduce the risk of atherosclerosis via remodeling of gut microbiota: research progress. Chin J Microecol. 2017;29(08):975–9. https://doi.org/10.13381/j.carolcarrollnki.CJM.201708027.
Article
Google Scholar
Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio. 2016;7(2):e02210-02215. https://doi.org/10.1128/mBio.02210-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct. 2014;5(6):1241–9. https://doi.org/10.1039/c3fo60630a.
Article
CAS
PubMed
Google Scholar
Sung MM, Kim TT, Denou E, Soltys CM, Hamza SM, Byrne NJ, et al. Improved glucose homeostasis in obese mice treated with resveratrol is associated with alterations in the gut microbiome. Diabetes. 2017;66(2):418–25. https://doi.org/10.2337/db16-0680.
Article
CAS
PubMed
Google Scholar
Zhu L, Zhang D, Zhu H, Zhu J, Weng S, Dong L, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe(-/-) mice. Atherosclerosis. 2018;268:117–26. https://doi.org/10.1016/j.atherosclerosis.2017.11.023.
Article
CAS
PubMed
Google Scholar
Li X, Su C, Jiang Z, Yang Y, Zhang Y, Yang M, et al. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. NPJ Biofilms Microbiomes. 2021;7(1):36. https://doi.org/10.1038/s41522-021-00205-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Zhao Y, Xu J, Xue Z, Zhang M, Pang X, et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep. 2015;5:14405. https://doi.org/10.1038/srep14405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Xu JH, Yu T, Chen QK. Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed Pharmacother. 2019;118: 109131. https://doi.org/10.1016/j.biopha.2019.109131.
Article
CAS
PubMed
Google Scholar
Chaplin A, Carpéné C, Mercader J. Resveratrol, metabolic syndrome, and gut microbiota. Nutrients. 2018. https://doi.org/10.3390/nu10111651.
Article
PubMed
PubMed Central
Google Scholar
Man AWC, Li H, Xia N. Resveratrol and the interaction between gut microbiota and arterial remodelling. Nutrients. 2020. https://doi.org/10.3390/nu12010119.
Article
PubMed
PubMed Central
Google Scholar
Breuss JM, Atanasov AG, Uhrin P. Resveratrol and its effects on the vascular system. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20071523.
Article
PubMed
PubMed Central
Google Scholar
Treede I, Braun A, Sparla R, Kühnel M, Giese T, Turner JR, et al. Anti-inflammatory effects of phosphatidylcholine. J Biol Chem. 2007;282(37):27155–64. https://doi.org/10.1074/jbc.M704408200.
Article
CAS
PubMed
Google Scholar
Wang HL, Gao JP, Han YL, Xu X, Wu R, Gao Y, et al. Comparative studies of polydatin and resveratrol on mutual transformation and antioxidative effect in vivo. Phytomed Int J Phytother Phytopharmacol. 2015;22(5):553–9. https://doi.org/10.1016/j.phymed.2015.03.014.
Article
CAS
Google Scholar
Bode LM, Bunzel D, Huch M, Cho GS, Ruhland D, Bunzel M, et al. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am J Clin Nutr. 2013;97(2):295–309. https://doi.org/10.3945/ajcn.112.049379.
Article
CAS
PubMed
Google Scholar
Tan W, Wang Y, Wang K, Wang S, Liu J, Qin X, et al. Improvement of endothelial dysfunction of berberine in atherosclerotic mice and mechanism exploring through TMT-based proteomics. Oxid Med Cell Longev. 2020;2020:8683404. https://doi.org/10.1155/2020/8683404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Wang Z, Song Y, Wu D, Zheng X, Li P, et al. Effects of berberine on amelioration of hyperglycemia and oxidative stress in high glucose and high fat diet-induced diabetic hamsters in vivo. BioMed Res Int. 2015;2015: 313808. https://doi.org/10.1155/2015/313808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ehteshamfar SM, Akhbari M, Afshari JT, Seyedi M, Nikfar B, Shapouri-Moghaddam A, et al. Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J Cell Mol Med. 2020;24(23):13573–88. https://doi.org/10.1111/jcmm.16049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu JH, Liu XZ, Pan W, Zou DJ. Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels. Mol Med Rep. 2017;15(5):2765–87. https://doi.org/10.3892/mmr.2017.6321.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng R, Shou JW, Zhao ZX, He CY, Ma C, Huang M, et al. Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci Rep. 2015;5:12155. https://doi.org/10.1038/srep12155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan X, Zou LF, Huang XZ, Ding XW. Effects of mulberry leaves water extract on cholesterol metabolites in feces of high-fat diet fed mice. Mod Food Sci Technol. 2019;35(05):37-45+295. https://doi.org/10.13982/j.mfst.1673-9078.2019.5.006.
Article
Google Scholar
Ma K, Yu K, He YX, Li J, Wang MK. Effects of mulberry leaves water extract on lipid metabolites and intestinal flora in obese rats. West China J Pharm Sci. 2019;34(03):151–4. https://doi.org/10.13375/j.cnki.wcjps.2019.03.009.
Article
Google Scholar
Wang YQ. Bioactivity screening of polysaccharide SY01-23 isolated from Morus alba L. on human gut microbiota and the mechanism underlying the toxic effect of its main residue galacturonic acid on pancreatic β cells. MA thesis, Nanchang University; 2020.
Zhang LW, Su SL, Dai XX, Wei DD, Zhu Y, Qian DW, et al. Regulatory effect of mulberry leaf components on intestinal microflora in db / db mice. Acta Pharm Sin. 2019;54(05):867–76. https://doi.org/10.16438/j.0513-4870.2018-0932.
Article
Google Scholar
He XY, He JJ, Zheng NN, Wang SC, Li HK. Study on anti-obesity effect and modulation of gut microbiota by Astragalus polysaccharides in mice. World Chin Med. 2016;11(11):2379-2384+2388.
CAS
Google Scholar
Li Q, Liu F, Liu J, Liao S, Zou Y. Mulberry leaf polyphenols and fiber induce synergistic antiobesity and display a modulation effect on gut microbiota and metabolites. Nutrients. 2019. https://doi.org/10.3390/nu11051017.
Article
PubMed
PubMed Central
Google Scholar
Gao WJ, Hou M, Chen XX, Wang P, Ren RG, Liu JX. Mechanism of Astragali radix vesicle-like nanoparticles for reducing blood glucose in db/db diabetic mice by regulating gut microbiota. Chin J Exp Tradit Med Formulae. 2021;27(14):111–8. https://doi.org/10.13422/j.cnki.syfjx.20211556.
Article
Google Scholar
Zhang W. Interaction studies between flavanone glycosides and isoflavone glycosides with human intestinal bacteria, MA thesis, Nanjing University of Chinese Medicine; 2014.
Xiao XY. Study on the hypoglycemic effect and mechanism of astragaloside based on intestinal flora and insulin pathway, MA thesis, Shaanxi University of Science and Technology; 2020.
Meng Q, Bao L, Zhang Y, Zhang L, Wang ZZ, Yan D, et al. Study on hypoglycemic mechanism of combination of Berberine and Astragaloside IV based on regulation of gut microbiota. Food Drug. 2020;22(3):169–75 (CNKI:SUN:SDPK.0.2020-03-002).
Google Scholar
Ding Q. The mechanism of polysaccharides from Ganoderma atrum on type 2 diabetic rats through gut microbiota [博士]: Nancang University; 2020.
Yang K, Zhang YJ, Zhang S, Gai M, Pi XG, Hu JR, et al. Preparation of Ganderma lucidum spore oligosaccharide and its regulation on gut microbiota. Food Ferment Ind. 2020;46(09):37–42. https://doi.org/10.13995/j.cnki.11-1802/ts.023251.
Article
CAS
Google Scholar
Chang CJ, Lin CS, Lu CC, Martel J, Ko YF, Ojcius DM, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489. https://doi.org/10.1038/ncomms8489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei YG, Yang HX, Zhu CH, Deng JJ, Fan DD. Hypoglycemic effect of ginsenoside Rg5 mediated partly by modulating gut microbiota dysbiosis in diabetic db/db Mice. J Agric Food Chem. 2020;68(18):5107–17. https://doi.org/10.1021/acs.jafc.0c00605.
Article
CAS
PubMed
Google Scholar
Yue H, Zhou DY, Zhang MY, Zhang Y, Dai YL, Zheng F, et al. In vitro biotransformation of protopanaxtriol saponins from red ginseng by intestinal flora and its effect on intestinal flora. Chin J Appl Chem. 2021;38(03):323–30. https://doi.org/10.19894/j.issn.1000-0518.210031.
Article
Google Scholar
Chen L, Xu W, Chen D, Chen G, Liu J, Zeng X, et al. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro. Int J Biol Macromol. 2018;112:1055–61. https://doi.org/10.1016/j.ijbiomac.2018.01.183.
Article
CAS
PubMed
Google Scholar
Cheng Y, Sibusiso L, Hou L, Jiang H, Chen P, Zhang X, et al. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice. Int J Biol Macromol. 2019;131:1162–70. https://doi.org/10.1016/j.ijbiomac.2019.04.040.
Article
CAS
PubMed
Google Scholar
Deville C, Gharbi M, Dandrifosse G, Peulen O. Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J Sci Food Agric. 2007;87(9):1717–25. https://doi.org/10.1002/jsfa.2901.
Article
CAS
Google Scholar
Nguyen SG, Kim J, Guevarra RB, Lee JH, Kim E, Kim SI, et al. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet. Food Funct. 2016;7(10):4193–201. https://doi.org/10.1039/c6fo00929h.
Article
CAS
PubMed
Google Scholar
Zhang YP, Zhao NN, Yang LH, Hong Z, Cai B, Le QQ, et al. Insoluble dietary fiber derived from brown seaweed Laminaria japonica ameliorate obesity-related features via modulating gut microbiota dysbiosis in high-fat diet-fed mice. Food Funct. 2021;12(2):587–601. https://doi.org/10.1039/d0fo02380a.
Article
CAS
PubMed
Google Scholar
Yu XH, Zhang XR, Zhu YP, Lu GG, Liu X, Dawa LM, et al. Study on the extraction technology and vitro antibacterial activity of rhubarb anthraquinone compounds. China J Tradit Chin Med Pharm. 2018;33(11):5186–9 (CNKI:SUN:BXYY.0.2018-11-110).
Google Scholar
Régnier M, Rastelli M, Morissette A, Suriano F, Le Roy T, Pilon G, et al. Rhubarb supplementation prevents diet-induced obesity and diabetes in association with increased Akkermansia muciniphila in mice. Nutrients. 2020. https://doi.org/10.3390/nu12102932.
Article
PubMed
PubMed Central
Google Scholar
Cui HX, Zhang LS, Luo Y, Yuan K, Huang ZY, Guo Y. A purified anthraquinone-glycoside preparation from rhubarb ameliorates type 2 diabetes mellitus by modulating the gut microbiota and reducing inflammation. Front Microbiol. 2019;10:1423. https://doi.org/10.3389/fmicb.2019.01423.
Article
PubMed
PubMed Central
Google Scholar
Wang RF, Lie HY, Zang P, Du H. The effect of rhein on the gut microbiota in diabetes mice. Chin J Microecol. 2016;28(01):21-24+46. https://doi.org/10.13381/j.cnki.cjm.201601005.
Article
CAS
Google Scholar
Li L, Li R, Zhu R, Chen B, Tian Y, Zhang H, et al. Salvianolic acid B prevents body weight gain and regulates gut microbiota and LPS/TLR4 signaling pathway in high-fat diet-induced obese mice. Food Funct. 2020;11(10):8743–56. https://doi.org/10.1039/d0fo01116a.
Article
CAS
PubMed
Google Scholar
Zhou B, Tian FZ, Yin ZL, Li XJ. Protective mechanism of Salvia miltiorrhiza on intestinal barrier. Chin J Digest. 2000;06:45–7 (CNKI:SUN:ZHHX.0.2000-06-022).
Google Scholar
Padayachee A, Day L, Howell K, Gidley MJ. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit Rev Food Sci Nutr. 2017;57(1):59–81. https://doi.org/10.1080/10408398.2013.850652.
Article
CAS
PubMed
Google Scholar
Li YG, Ji DF, Zhong S, Lin TB, Lv ZQ, Hu GY, et al. 1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice. Sci Rep. 2013;3:1377. https://doi.org/10.1038/srep01377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian Y, Ding YP, Shao BP, Yang J, Wu JG. Interaction between homologous functional food Astragali Radix and intestinal flora. China J Chin Mater Med. 2020;45(11):2486–92. https://doi.org/10.19540/j.cnki.cjcmm.20200119.401.
Article
CAS
Google Scholar
Sun GX, Zhao YY, Miao PP, Yang XY, Miao Q, Li J, et al. Stability study in biological samples and metabolites analysis of astragaloside Iv in rat intestinal bacteria in vitro. China J Chin Mater Med. 2014;39(21):4258–64 (CNKI:SUN:ZGZY.0.2014-21-034).
CAS
Google Scholar
Yang G, Zhuo J, Lin Y, Zhang M, Liu L, Chen X, et al. Ginsenoside Rb1 prevents dysfunction of endothelial cells by suppressing inflammatory response and apoptosis in the high-fat diet plus balloon catheter-injured rabbit model via the G protein-coupled estrogen receptor-mediated phosphatidylinositol 3-kinases (PI3K)/Akt pathway. Med Sci Monit. 2019;25:7407–17. https://doi.org/10.12659/msm.912986.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qomaladewi NP, Kim MY, Cho JY. Autophagy and its regulation by ginseng components. J Ginseng Res. 2019;43(3):349–53. https://doi.org/10.1016/j.jgr.2018.12.011.
Article
PubMed
PubMed Central
Google Scholar
Nanao-Hamai M, Son BK, Komuro A, Asari Y, Hashizume T, Takayama KI, et al. Ginsenoside Rb1 inhibits vascular calcification as a selective androgen receptor modulator. Eur J Pharmacol. 2019;859: 172546. https://doi.org/10.1016/j.ejphar.2019.172546.
Article
CAS
PubMed
Google Scholar
Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6. https://doi.org/10.1038/nature12331.
Article
CAS
PubMed
Google Scholar
de Jesus Raposo MF, de Morais AM, de Morais RM. Emergent sources of prebiotics: seaweeds and microalgae. Mar Drugs. 2016. https://doi.org/10.3390/md14020027.
Article
PubMed
PubMed Central
Google Scholar
Patil NP, Le V, Sligar AD, Mei L, Chavarria D, Yang EY, et al. Algal polysaccharides as therapeutic agents for atherosclerosis. Front Cardiovasc Med. 2018;5:153. https://doi.org/10.3389/fcvm.2018.00153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin J, Wang J, Li F, Yang Z, Yang X, Sun W, et al. The fucoidan from the brown seaweed Ascophyllum nodosum ameliorates atherosclerosis in apolipoprotein E-deficient mice. Food Funct. 2019;10(8):5124–39. https://doi.org/10.1039/c9fo00619b.
Article
CAS
PubMed
Google Scholar
Wang X, Pei LL, Liu HB, Qv K, Xian WW, Liu J, et al. Fucoidan attenuates atherosclerosis in LDLR-/- mice through inhibition of inflammation and oxidative stress. Int J Clin Exp Pathol. 2016;9(7):6896–904.
CAS
Google Scholar
Cao YJ, Pu ZJ, Tang YP, Shen J, Chen YY, Kang A, et al. Advances in bio-active constituents, pharmacology and clinical applications of rhubarb. Chin Med. 2017;12:36. https://doi.org/10.1186/s13020-017-0158-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brkanac SR, Gerić M, Gajski G, Vujčić V, Garaj-Vrhovac V, Kremer D, et al. Toxicity and antioxidant capacity of Frangula alnus Mill. bark and its active component emodin. Regul Toxicol Pharmacol. 2015;73(3):923–9. https://doi.org/10.1016/j.yrtph.2015.09.025.
Article
CAS
PubMed
Google Scholar
Chen YK, Xu YK, Zhang H, Yin JT, Fan X, Liu DD, et al. Emodin alleviates jejunum injury in rats with sepsis by inhibiting inflammation response. Biomed Pharmacother. 2016;84:1001–7. https://doi.org/10.1016/j.biopha.2016.10.031.
Article
CAS
PubMed
Google Scholar
Liu PY, Yu SJ, Zhu Y, Gao TS. Effects of Rhein on resistin m RNA expression of adipose tissue and plasma free fatty acid in diabetic obese rats. Chin J Diabetes. 2011;19(05):347–9 (CNKI:SUN:ZGTL.0.2011-05-012).
CAS
Google Scholar
Wan XH, Wang YL, Zhou CZ, Guo H, Ma S, Wang YZ. Research progress on chemical constituents and pharmacological effects on Salvia miltiorrhiza. Chin Tradit Herbal Drugs. 2020;51(03):788–98 (CNKI:SUN:ZCYO.0.2020-03-032).
Google Scholar
Meng C, Zhuo XQ, Xu GH, Liu JL. Protection of salvianolate against atherosclerosis via regulating the inflammation in rats. J Huazhong Univ Sci Technol Med Sci. 2014;34(5):646–51. https://doi.org/10.1007/s11596-014-1331-z.
Article
CAS
Google Scholar
Liu YL, Liu GT. Inhibition of human low-density lipoprotein oxidation by Salvianolic Acid-A. Acta Pharm Sin. 2002;02:81–5. https://doi.org/10.16438/j.0513-4870.2002.02.001.
Article
Google Scholar
Gu JF, Su SL, Guo JM, Zhu Y, Zhao M, Duan JA. The aerial parts of Salvia miltiorrhiza Bge. strengthen intestinal barrier and modulate gut microbiota imbalance in streptozocin-induced diabetic mice. J Funct Foods. 2017. https://doi.org/10.1016/j.jff.2017.06.010.
Article
Google Scholar
Han C, Jiang YH, Li W, Liu Y, Qi ZQ. Study on the antihypertensive mechanism of Astragalus membranaceus and Salvia miltiorrhiza based on intestinal flora-host metabolism. Evid Based Complement Altern Med eCAM. 2019;2019:5418796. https://doi.org/10.1155/2019/5418796.
Article
Google Scholar
Xiao S, Zhang Z, Chen M, Zou J, Jiang S, Qian D, et al. Xiexin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism. J Ethnopharmacol. 2019;241: 112032. https://doi.org/10.1016/j.jep.2019.112032.
Article
PubMed
Google Scholar
Wei X, Tao J, Xiao S, Jiang S, Shang E, Zhu Z, et al. Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota. Sci Rep. 2018;8(1):3685. https://doi.org/10.1038/s41598-018-22094-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Nakashima S, Nakamura S, Matsuda H. Effects of Sanoshashinto on left ventricular hypertrophy and gut microbiota in spontaneously hypertensive rats. J Nat Med. 2020;74(2):482–6. https://doi.org/10.1007/s11418-020-01387-9.
Article
CAS
PubMed
Google Scholar
Li JB, Yuan HC, Zhao J, Shen XX. Effects of buyanghuanwu Decoction on intestinal flora and tmao in rats with heart failure. World J Integr Tradit West Med. 2020;15(10):1814–8. https://doi.org/10.13935/j.cnki.sjzx.201011.
Article
Google Scholar
Sun ML, Shi JL. Research of protective effect and change of intestinal flora of buyang Huanwu Decoction plus Ruidai on ischemia-reperfusion injury rats. Chin Arch Tradit Chin Med. 2015;33(09):2274–8. https://doi.org/10.13193/j.issn.1673-7717.2015.09.062.
Article
CAS
Google Scholar
Wu WF, Nie HF, Hu LJ, Sun YH, Luo N, Jiang CT, et al. Effect of Buyang Huanwu Decoction on gut microbiota and plasma metabolites in ischemic stroke rats with qi deficiency and blood stasis syndrome. Chin Tradit Herb Drugs. 2021;52(01):118–28 (CNKI:SUN:ZCYO.0.2021-01-016).
Google Scholar
Tang YP, Duan JA, Guo S, Su SL, Qian DW, Guo JM. Speculations on relationship between dosage and effect of prescriptions. J Nanjing Univ Tradit Chin Med. 2009;25(01):21–2326 (CNKI:SUN:NJZY.0.2009-01-005).
Google Scholar
Han C, Jiang YH, Li W. Research progress of Astragali Radix and Salviae Miltiorrhizae Radix on improving renal damage in hypertension. Chin J Exp Tradit Med Formulae. 2019;25(12):214–20. https://doi.org/10.13422/j.cnki.syfjx.20191105.
Article
Google Scholar
Yin XJ, Ma XJ, Wang L, Gong LL, Fan MQ, Li L, et al. Anti-atherosclerosis mechanism of Sanhuang Xiexintang in activating blood and resolving stasis formula in vitro. Chin J Exp Tradit Med Formulae. 2018;24(22):83–8. https://doi.org/10.13422/j.cnki.syfjx.20182215.
Article
Google Scholar
Li J, Zhu HH, Pang YL, Yang D, Wang DL, Wang YY, et al. Study of Dahuang-Huanglian-Xiexin decoction combined with conventional western medicine in patients with type 2 diabetes. Int J Tradit Chin Med. 2019;12:1301–5. https://doi.org/10.3760/cma.j.issn.1673-4246.2019.12.005.
Article
Google Scholar
Zhang H, Liang WJ, Ma ZX, Ye SL. Clinical study on effects of Buyang Huanwu Decoction on coronary heart disease. Chin J Integr Tradit West Med. 1995;04:213–5 (CNKI:SUN:ZZXJ.0.1995-04-006).
Google Scholar
Chen KY, Wu KC, Hueng DY, Huang KF, Pang CY. Anti-inflammatory effects of powdered product of Bu Yang Huan Wu decoction: possible role in protecting against transient focal cerebral ischemia. Int J Med Sci. 2020;17(12):1854–63. https://doi.org/10.7150/ijms.46581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang XD. Curative effect observation of modified Buyang Huanwu Decoction in treatment of angina of coronary heart and its effect on serum HS-CRP and Hcy, MA thesis, Heilongjiang University of Chinese Medicine; 2020.
Lee SJ, Kim KM, Namkoong S, Kim CK, Kang YC, Lee H, et al. Nitric oxide inhibition of homocysteine-induced human endothelial cell apoptosis by down-regulation of p53-dependent Noxa expression through the formation of S-nitrosohomocysteine. J Biol Chem. 2005;280(7):5781–8. https://doi.org/10.1074/jbc.M411224200.
Article
CAS
PubMed
Google Scholar
Liu YH, Qiu SH, You Y, Yang D, Peng X. Effect of Buyanghuanwu Decoction on preventing atherosclerosis induced by Hcy via Inhibiting NF-КB-dependent pathway. Chin Pharm J. 2012;47(02):104–8 (CNKI:SUN:ZGYX.0.2012-02-007).
Google Scholar
Zheng YC, Lu WX, Lu N. Efficacy and Safety of Buyang Huanwu Decoction in treating angina pectoris of coronary heart disease with qi deficiency and blood stasis: a meta-analysis. Chin J Integr Med Cardio-Cerebrovasc Dis. 2021;19(09):1469–75 (CNKI:SUN:ZYYY.0.2021-09-007).
Google Scholar
Lu XH, Zhang Y. Ding’s experience in treating coronary heart disease with the method of “tonifying Qi, resolving blood stasis and relieving toxin.” J Shandong Univ Tradit Chin Med. 2013;37(04):294–6. https://doi.org/10.16294/j.cnki.1007-659x.2013.04.016.
Article
Google Scholar
Bi FY, Wang XL, Zhao ZQ, Hou YZ, Wang S, Zhao GY, et al. Clinical epidemiological investigation on current syndrome characteristics of coronary heart disease in Chinese medicine. J Tradit Chin Med. 2017;58(23):2013–9. https://doi.org/10.13288/j.11-2166/r.2017.23.009.
Article
Google Scholar