Skip to content

Advertisement

Chinese Medicine

What do you think about BMC? Take part in

Open Access

Glossogyne tenuifolia (Hsiang-ju) extract suppresses T cell activation by inhibiting activation of c-Jun N-terminal kinase

  • Jer-Yiing Houng1,
  • Tzong-Shyuan Tai2, 3,
  • Shu-Ching Hsu4, 5,
  • Hsia-Fen Hsu1,
  • Tzann-Shun Hwang6,
  • Chih-Jiun Lin7 and
  • Li-Wen Fang1Email author
Contributed equally
Chinese Medicine201712:9

https://doi.org/10.1186/s13020-017-0130-4

Received: 7 March 2016

Accepted: 17 March 2017

Published: 11 April 2017

Abstract

Background

Glossogyne tenuifolia (GT) (Hsiang-ju) is a Chinese herbal medicine previously exhibited an anti-inflammatory activity. This study aimed to investigate the effect of GT ethanol extract (GTE) on T cell-mediated adaptive immunity.

Methods

Human peripheral blood mononuclear cells (PBMCs) and Jurkat T cells were activated by phytohemagglutinin in the presence of various doses (3.13–50 μg/mL) of GTE. The effect of GTE on T cell activation was examined by a proliferation assay of activated PBMCs and the level of the activation marker CD69 on the surface of activated Jurkat T cells. Apoptosis was determined by propidium iodide staining in hypotonic solution. Signaling pathway molecules were assessed by western blotting.

Results

Glossogyne tenuifolia ethanol extract was demonstrated to inhibit T cell activation, not only in the proliferation of human PBMCs at the concentrations of 12.5, 25 and 50 μg/mL (P = 0.0118, 0.0030 and 0.0021) but also in the CD69 expression in Jurkat cells, which was not due to the cytotoxicity of GTE. The presence of GTE did not change the activity of nuclear factor kappa-light-chain-enhancer of activated B cells or extracellular signal-regulated kinase upon T cell activation. In addition, GTE significantly reduced activation of c-Jun N-terminal kinase (JNK) (P = 0.0167) and p38 (P = 0.0278). Furthermore, decreased JNK activation mediated the preventive effect of GTE on T cell activation-induced cell death (AICD).

Conclusion

Glossogyne tenuifolia ethanol extract inhibited T cell activation of Jurkat cells and freshly prepared human PBMCs due to suppression of JNK activity. Furthermore, GTE inhibited AICD by blocking prolonged JNK phosphorylation in activated T cells. Taken together, the anti-inflammatory effects exerted by GTE were mediated via suppression of JNK phosphorylation in T cell activation.

Background

Inflammation is a normal host defense mechanism against infection, involving not only innate but also adaptive immunity. However, uncontrolled inflammation may lead to tissue damage and cause autoimmune or autoinflammatory diseases. In autoinflammatory diseases, such as type 2 diabetes and obesity, macrophages in innate immunity become dysfunctional [1]. In contrast, autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis, lupus, and multiple sclerosis, are often mediated by lymphocytes of adaptive immunity rather than macrophages [1]. T cells are the dominant dysfunctional cells or initiators during the development of autoimmune diseases [1].

Anti-inflammatory drugs have several adverse side effects. Glossogyne tenuifolia (GT) (Hsiang-ju) is a perennial herb of Asteraceae that is distributed from south Asia to Australia. GT is a Chinese medicine used in antipyretic, hepatoprotective, and anti-inflammatory remedies [2, 3]. Previous studies have shown that GT extract possesses pharmacological activities of antioxidation [46], cytotoxicity against several cancer cell lines [4, 7], protection against endothelial cell injury [8], and prevention of osteoclast-related diseases such as osteoporosis [9]. In addition, GT exhibited activity in immunomodulation [1012]. GT extract downregulated the gene expression of inducible nitric oxide synthase and cyclooxygenase-2, as well as the production of proinflammatory cytokines upon stimulation by lipopolysaccharide (LPS) in Raw 264.7 cells [10] and human peripheral blood mononuclear cells (PBMCs) [11]. However, the effect of GT on adaptive immune cells, such as T cells, remains unclear.

Currently, the discovery of safe natural products for the treatment of inflammatory disorders focuses on inhibition of macrophage activity [13]. However, cells of the adaptive immune system, such as T and B cells, mediate inflammatory processes of some inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease. Molecules of the activation pathway of T cells might be a good target for modulation of these inflammatory diseases [1]. Resting T cells are in the G0 phase of the cell cycle. In response to T cell receptor (TCR) ligation, mitogenic stimulation, or a combination of a phorbol ester and calcium ionophore, T cells activate and transduce activation signals, leading to their proliferation. TCRs initiate signaling cascades that lead to activation of downstream mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [14]. Extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK are important MAPKs involved in T cell activation. Cell proliferation and differentiation into effector cells as well as the production of interleukin (IL)-2 reflect the degree of T cell activation, and a lack of either MAPK or NF-κB impairs T cell activation-induced proliferation and IL-2 production [15].

Activated T cells undergo apoptosis upon re-stimulation, which is called activation-induced cell death (AICD). AICD is a critical mechanism to eliminate autoreactive lymphocytes in the immune system and maintain immune tolerance and homeostasis [16]. During cancer progression, the immune system acts as a significant barrier. Immune cells, such as CD8+ cytotoxic T lymphocytes (CTLs), CD4+ helper T cells, and natural killer cells, contribute to immunosurveillance and tumor elimination [17]. In antitumor immunotherapy, AICD of T cells is believed to be the key event leading to the failure of anti-tumor effects [18, 19]. Several studies of cancer immunotherapy using different approaches have highlighted inhibition of AICD to rescue activated T cells, thereby enhancing anti-tumor immune responses [1821]. In adoptive cancer immunotherapy [22], tumor antigen-specific T cells are susceptible to AICD upon encountering the tumor antigen, causing the low success rate of cancer immunotherapy. Phosphorylation of JNK is critical for AICD of melanoma antigen-specific primary CTLs, and blocking JNK activation prevents AICD of CTLs [20, 23, 24]. This study aimed to investigate the effect of GT ethanol extract (GTE) on T cell-mediated adaptive immunity.

Methods

Preparation of GTE

GT plant materials were purchased from an herb store in Penghu Island, Taiwan, and deposited as the number of ISU-JYH-001 in the Herbarium of I-Shou University (Kaohsiung City, Taiwan). The nucleotide sequences of internal transcribed spacer (ITS) 1, ITS2, and 5.8S rDNA were isolated from this plant, and the species was confirmed by the NCBI DNA database [4]. Dry whole plant materials were ground into powder. GT (5.3 kg) was extracted with 20 L of 95% ethanol at room temperature for 1 day and repeated for three times. The extracted solutions were filtered through medicinal gauze. The GTE was obtained by removing the solvent with a rotary evaporator (VP-60DJ, Panchum Co., Kaohsuing City, Taiwan) and drying in a freeze drier (FD8530, Panchum Co.). The total dry weight of this extract was 777 g, and the extraction yield was 14.7%. The quality of the herb extract was monitored by high performance liquid chromatography (L-7100, Hitachi, Tokyo, Japan) analysis using luteolin and luteolin-7-glucoside (Sigma Chemicals Co., St Louis, MO, USA) as the principle control standards [4, 9]. The dry GTE was dissolved in dimethyl sulfoxide (DMSO) at the concentration 50 mg/mL as the GTE stock. The final GTE concentrations (3.13, 6.3, 12.5, 25 and 50 μg/mL) were made by culture medium dilution. The DMSO was added no more than 0.1% (v/v) and used as a mock control in this study.

Cell culture and human PBMC preparation

Human PBMCs were prepared from the whole blood and human leukemia cell line Jurkat was obtained from American Type Cell Collection (ATCC, Manassas, VA, USA). Human PBMCs and leukemic Jurkat cells were grown in RPMI-1640 medium (GE Healthcare, Piscataway, NJ, USA) with 10% fetal bovine serum (FBS; Thermo Fisher Scientific Inc., Waltham, MA, USA), 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA), and 2 mM l-glutamine (Sigma-Aldrich) at 37 °C in a humidified atmosphere with 5% CO2. Human PBMCs were isolated from whole blood using a Ficoll-Paque plus density gradient [25]. Whole bloods from healthy volunteers were mixed with the same volume of Hank’s balanced salt solution (HBSS; Thermo Fisher, St. Louis, MO, USA). The blood-HBSS mixture was layered over Ficoll-Paque PLUS (GE Healthcare) 1:1 (v/v) and centrifuged (5810R, Eppendorf, Hamburg, Germany) (400×g) for 20 min at 25 °C with the break off. The PBMC layer at the interface was collected and washed with HBSS three times by centrifugation (300×g) for 5 min at 4 °C. The PBMCs were suspended in RPMI-1640 medium. The study protocols were approved by the Institutional Review Board of the Research Ethics Committee of National Health Research Institutes (EC1001101) (Additional file 1).

Western blotting

For each sample, 1 × 106 cells were washed with phosphate buffered saline (PBS; pH 7.2) and lysed in freshly prepared cell lysis buffer (20 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4, 1 µg/mL leupeptin, and 1 mM phenylmethanesulfonyl fluoride). The cell lysate was separated from debris by centrifugation at 13,200×g for 10 min at 4 °C. The protein concentration was measured by Bio-Rad Protein Assay Dye Reagent (Bio-Rad Laboratories, Hercules, CA, USA). An aliquot of 20 μg protein was separated on a 10% polyacrylamide gel and transferred onto a polyvinylidene fluoride membrane (EMD Millipore, Billerica, MA, USA). The membranes were subsequently blocked with 5% dry skim milk in Tris-buffered saline (TBS; pH 7.5). The membranes were hybridized with the indicated primary antibody at 4 °C overnight, washed three times with 0.05% TBST solution (50 mM Tris–Cl, pH 7.5, 150 mM NaCl, and 0.05% Tween-20) for 10 min, and then hybridized with a horseradish peroxidase (HRP)-conjugated secondary antibody at room temperature for 1 h. After washing three times with 0.05% TBST for 10 min each, the membrane was incubated with Luminata™ Western HRP Substrates (EMD Millipore). The signals were detected using Image Lab software Version 2.0 (Bio-Rad Laboratories).

T cell proliferation and activation assay

PBMCs (1 × 105) were pretreated with GTE (3.13, 6.3, 12.5, 25 and 50 μg/mL) for 30 min and then activated by 2.5 μg/mL phytohemagglutinin (PHA) in each well of a 96-well plate for 48 h. An aliquot of 0.5 μCi 3H-thymidine was added to each well. After 20 h of incubation, the cells were harvested with a FilterMate 96-well harvester (PerkinElmer Inc, Waltham, MA, USA) for a proliferation assay. The radioactivity (counts per minute, CPM) was measured to quantify cell proliferation with a microplate scintillation and luminescence counter (TopCount NXT, Packard Instrument Co, Meriden, CT, USA). Jurkat cells (1 × 105) were pretreated with GTE (25 μg/mL) for 30 min and then stimulated by 10/80 ng/mL 12-O-tetradodecanoyl-phorbol-13-acetate (PMA)/ionomycin (P/I) in each well of a 96-well plate for 24 h. Cells were then harvested for surface marker staining. To detect NF-κB activation, phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) and p65 proteins were determined by western blotting. Jurkat cells (1 × 106) were pretreated with GTE (25 μg/mL) for 30 min and then stimulated by PHA (2.5 μg/mL) for 0, 1, and 3 h. Cell lysates were then prepared for western blot analysis. To detect MAPK activation (p-ERK, p-p38, and p-JNK), 1 × 106 Jurkat cells were pretreated with GTE (25 μg/mL) for 30 min and then stimulated with 2.5 μg/mL PHA for 0, 10 and 20 min. Cell lysates were then prepared for western blotting. Primary antibodies against p-IκB (#2859, 1:500), p-p65 (#3033, 1:2000), p-ERK (#9101, 1:3000), p-p38 (#4511, 1:1000), and p-JNK (#4671, 1:500) were purchased from Cell Signaling Technology (Beverly, MA, USA). Primary antibodies against α-tubulin (#2871, 1:3000) was purchased from Epitomics Inc. (Burlingame, CA, USA). Primary antibodies against ERK2 (sc-154, 1:5000), p38 (sc-535, 1:3000), and JNK1 (sc-1648, 1:1000), and an HRP-conjugated secondary antibody were purchased from Santa Cruz Biotechnology (Dallas, TX, USA).

Cell surface staining

Jurkat cells (1 × 105) were stimulated with P/I (10/80 ng/mL) for 24 h. The cells were then stained with CD69-PE (12-0699, 1:50, eBioscience, San Diego, CA, USA) in staining buffer (PBS with 1% FBS) on ice for 20 min and then washed three times with staining buffer. The CD69-positive population was evaluated by a flow cytometer (FACSCalibur; BD Biosciences). Data were analyzed with FlowJo software (BD Biosciences). The signal obtained for the cells treated without or with GTE alone and stained with mouse IgG1 isotype control-PE (12-4714, 1:50, eBioscience) was used as a control respectively.

Apoptosis assay

Apoptosis was determined by propidium iodide (PI) (Sigma-Aldrich) staining [26]. PBMCs or Jurkat cells (1 × 105) were treated with various concentrations of GTE (3.13, 6.3, 12.5, 25 and 50 μg/mL) in each well of a 96-well plate for 24 h. Harvested cells were suspended in a hypotonic solution (0.1% sodium citrate, 0.1% Triton X-100, and 20 μg/mL PI). The extent of the sub-G0/G1 peak representing apoptotic cells was measured by gating on cells stained in the region below the G0/G1 peak. The apoptotic sub-G0/G1 population was examined by flow cytometry and analyzed with FlowJo software (BD Biosciences).

AICD assay

Healthy female Balb/c mice were obtained from National Laboratory Animal Center (NLAC, Taipei, Taiwan) at 4 weeks of age. The animals were maintained in cages (5 mice/cage) under standard conditions. The mice were euthanized by use of CO2 exposure. CD4+ T cells isolated from the splenocytes of C57BL/6 mice were activated by antibodies against CD3 (16-0031, eBioscience) and CD28 (16-0281, eBioscience) (1 and 2 μg/mL, respectively) in the presence of 100 U/mL IL-2 for 5 days. The activated T cells were washed three times and reactivated by the anti-CD3 (16-0031, eBioscience) antibody (0.5 μg/mL) for 8 h. The cells were then harvested for an apoptosis assay. All animal experiments were performed in accordance with protocols approved by the Institutional Animal Care and Use Committee of I-Shou University (IACUC-ISU-96002) (Additional file 2). The combination of P/I and sodium orthovanadate (Na3VO4) induces significant AICD in Jurkat T cells [27]. Jurkat cells (1 × 105) were pretreated with GTE (25 μg/mL) for 30 min and then activated by P/I (10/80 ng/mL) and 1.5 mM Na3VO4 in each well of a 96-well plate for 24 h. The cells were then harvested for an apoptosis assay.

Statistical analyses

Each experiment was performed at least three times and measured in triplicates. The data were presented as mean ± standard deviation (SD). Each GTE-treated group was compared to the respective mock-treated (DMSO) control group. Statistical differences were analyzed by Student’s t-test (*P < 0.05, **P < 0.01 and ***P < 0.001). Data were analyzed using GraphPad Prism software (GraphPad Software, La Jolla, CA, USA).

Information of experimental design and resources

Details of our experimental design and statistics and all resources used in this study were included in Additional file 3.

Results

Inhibitory effects of GTE on the activation of T cells and PBMCs

Mitogen stimulation hydrolyzes membrane polyphosphoinositides to inositol trisphosphate (IP3) and diacylglycerol (DAG). Then, IP3 releases Ca2+ into the cytosol, and DAG activates protein kinase C (PKC). These synergistic effects lead to progression of the cell cycle and proliferation of T cells [28, 29]. A combination of phorbol esters, which activates PKC, and a calcium ionophore, which increases the intracellular Ca2+ concentration, mimic the signals triggered by the TCR or mitogen stimulation and can be used as agents for T cell activation. In addition, CD69 is an early activated surface molecule on T cells, and expression of CD69 has been frequently used as an indicator for T cell activation [30].

GTE has been reported to exert an inhibitory effect on LPS-treated macrophage and human PBMC activation [10, 11]. To further explore the influence of GTE on adaptive immunity, we examined the effect of GTE on the activation of T cells. PHA (a mitogen) or a combination of PMA (a phorbol ester) and ionomycin (a calcium ionophore) were used to activate T cells. First, Jurkat cells were pretreated with 25 μg/mL GTE for 30 min and then P/I were added to induce T cell activation for 24 h. The expression of CD69 was used as the T cell activation marker [31]. Figure 1a shows that GTE treatment reduced the fluorescence intensity of CD69-PE on P/I-activated Jurkat cells. The mean fluorescence intensity (MFI) was determined after analyzing 10,000 cells. The MFI changes of GTE and mock control were expressed as the fold changes relative to the individual group without P/I stimulation. The relative MFI fold changes of GTE-treated and mock control were 2.69 ± 0.01 and 4.14 ± 0.12 respectively. These data demonstrated that GTE administration decreased P/I-induced CD69 expression on P/I-activated Jurkat cells (P = 0.0044). In addition, the proliferation of primary T cells, representing successful activation of T cells, was used to evaluate T cell activation of PHA-stimulated PBMCs. Proliferation of PBMCs triggered with PHA (2.5 μg/mL) was suppressed by GTE/PHA cotreatment compared with PHA treatment alone at the GTE concentrations of 12.5, 25 and 50 μg/mL (P = 0.0118, 0.0030 and 0.0021) (Fig. 1b). The results of 3H-thymidine incorporation of PHA-activated PBMCs from four individual donors showed the suppressive trend of GTE in a dose-dependent manner (Additional file 4). The inhibitory effect of GTE on CD69 expression of activated Jurkat T cells (Fig. 1a) correlated well with the proliferation of PHA-stimulated human PBMCs in which GTE inhibited PHA-induced proliferation by up to 80% at 25 μg/mL (Fig. 1b). These results indicated that the GTE inhibited activation of both Jurkat T cells and human PBMCs.
Fig. 1

GTE blocks T cell activation. a CD69 induction decreased in GTE-treated Jurkat T cells. Jurkat T cells were activated by PMA/ionomycin alone (P/I; solid line) or with 25 μg/mL GTE (long dashed line). GTE treatment alone (short dashed line) was used as a control. The cells were stained with an anti-CD69-PE antibody. The CD69-positive cells were then analyzed by flow cytometry. Data were assessed with FlowJo software. b Decreased proliferation of GTE-treated PBMCs. Freshly purified PBMCs were pretreated with various doses of GTE for 30 min and then stimulated by 2.5 μg/mL PHA. Cell proliferation was examined by 3H-thymidine incorporation after a 20 h pulse with 0.5 μCi/well 3H-thymidine. Data are expressed as counts per minute (CPM) of 3H-thymidine uptake. A significant difference from the vehicle is indicated as *P < 0.05 or **P < 0.01

Cytotoxic effect of GTE on Jurkat T cells and PBMCs

Cytotoxic activity of GTE has been reported in certain cancer cell lines such as HepG2, Hep3B, MDA-MB-231, and MCF-7 [4, 7, 32]. This study showed that the death of cancer cells was mediated through the apoptotic pathway. The downregulating effect of GTE on T cell activation could be due to a cytotoxic effect on T cells. Thus, to determine whether GTE has a cytotoxic effect on T cells, Jurkat cells were cultured in the presence of various doses of GTE for 24 h, and then the degree of apoptosis was examined. Figure 2a shows minimal apoptosis in Jurkat cells (<20%) treated with GTE at up to 50 μg/mL. In addition, almost no apoptosis was observed in PBMCs treated with GTE at less than 25 μg/mL (Fig. 2b). Because GTE did not induce apoptosis of human PBMCs at 25 μg/mL, this dosage was used for the following activation assay. These results suggested that the inhibitory effect of GTE on T cell activation was not due to a cytotoxic effect.
Fig. 2

GTE does not induce apoptosis of Jurkat cells or PBMCs. Jurkat cells (a) and PBMCs (b) were treated with GTE at the concentrations indicated for 24 h. The cells were stained with 20 μg/mL propidium iodide (PI) in a hypotonic solution (0.1% sodium citrate and 0.1% Triton X-100). The apoptotic cells were then analyzed by flow cytometry. Data were analyzed with FlowJo software. The left panel is the original apoptosis data. The right panel is quantitative data. The extent of the sub-G0/G1 peak representing apoptotic cells was measured by gating on cells in the region below the G0/G1 peak. Numbers above the bar in the right panel of Jurkat cells (a) and PBMCs (b) are P-values relative to the control group. A significant difference from the control is indicated as **P < 0.01

GTE down-regulated JNK phosphorylation, but not NF-κB activities, in activated human T cells

The T cell activation signal activates multiple downstream molecules including phosphorylation of MAPKs and NF-κB. It has been shown that inhibition of the DNA-binding activity of NF-κB upon PHA stimulation is significant at a high dosage of GTE (up to 150 μg/mL) but insignificant at a low GTE dose (less than 100 μg/mL) [12]. In this study, we further examined GTE effects on NF-κB activity in T cell activation signaling. In the NF-κB activation pathway, IκB is phosphorylated and undergoes degradation upon PHA stimulation. We therefore evaluated IκB phosphorylation upon T cell activation. Figure 3 shows that GTE-treated Jurkat cells displayed similar levels of IκB phosphorylation upon PHA stimulation. The phosphorylation of RelA/p65, one of the NF-κB members, regulates NF-κB transcriptional activity [33]. We found that RelA/p65 phosphorylation was normal after co-treatment with GTE (Fig. 3). These data suggest that the deficiency of T cell activation in the presence of GTE is independent of the NF-κB pathway.
Fig. 3

NF-κB activation is normal upon treatment with GTE. a Jurkat T cells were activated by PHA or PHA with GTE. Protein extracts were prepared at the indicated time points and subjected to western blot analysis. p-IκB and p-p65 protein levels were detected, and α-tubulin was used as an internal control. The densities of protein bands were determined by Image Lab software. Densitometric quantification of each protein band was normalized by the internal control. The levels of p-IκB and p-p65 are normalized by α-tubulin. Data represented fold activation from the non-activated (0 h) density (b, c)

Because NF-κB signaling was normal in GTE-treated Jurkat cells, we mapped the signal defect in these cells. In addition to NF-κB signaling, the activities of MAPKs are important for T cell activation. Thus, we further examined the activity of three major MAPKs, ERK, p38 MAPK, and JNK, after stimulation. T cell activation increased ERK phosphorylation, and GTE administration did not alter the phosphorylation status of ERK (Fig. 4a, b). GTE slightly inhibited p38 MAPK phosphorylation after stimulation with PHA for 20 min (P = 0.0278) (Fig. 4a, c). Notably, JNK phosphorylation was significantly suppressed by GTE in activated Jurkat cells at the activation time 10 and 20 min (P = 0.0217 and 0.0167) (Fig. 4a, d). Taken together, the suppression of T cell activation by GTE might be attributed to a slight reduction in p38 activation and profound JNK activation.
Fig. 4

GTE attenuates JNK and p38 activation. a Jurkat T cells were activated by PHA alone or with GTE. Protein extracts were prepared at the indicated time points and subjected to western blot analysis. Activation of ERK, JNK and p38 was measured by phosphorylation of ERK, JNK, and p38. ERK2, JNK1, and p38 served as internal controls. Densitometric quantification of fold inductions of the levels of b p-ERK2 relative to ERK2, c p-p38 relative to p38, and d p-JNK relative to JNK1 protein. The densities of protein bands were determined by Image Lab software. Densitometric quantification of each protein was normalized by the internal control. The level of p-ERK2 was normalized by ERK2. The level of p-p38 was normalized by p38, and the level of p-JNK was normalized by JNK1. Data represented fold activation from the non-activated (0 h) density (bd). A significant difference from the control is indicated as *P < 0.05

GTE attenuated prolonged JNK-induced AICD

JNK is activated by a wide array of stress conditions and mitogenic stimulation. Previous studies have shown that JNK plays an important role in AICD [27]. It is important to examine whether GTE regulates AICD by modulating the activity of JNK. Na3VO4, a tyrosine phosphatase inhibitor, has been used to prolong JNK activation during T cell activation, whereas the combination of P/I and Na3VO4 upon T cell stimulation induces significant AICD in Jurkat T cells [27]. In this study, Na3VO4 was also shown to induce apoptosis upon T cell activation by P/I. Furthermore, administration of GTE with Na3VO4 or P/I did not induce apoptosis of Jurkat T cells (Fig. 5a). Figure 5a also demonstrates that GTE blocked Na3VO4-induced apoptosis in activated Jurkat T cells (P = 0.0037). Next, we examined the effect of GTE on AICD in reactivated T cells ex vivo. Naïve CD4 T cells were activated with anti-CD3/CD28 antibodies and maintained in IL2-containing medium for 5 days. The activated CD4 T cells were then re-activated with the anti-CD3 antibody to trigger AICD. Figure 5b shows that T cells underwent AICD through repeated stimulation of CD3, and GTE inhibited AICD of primary isolated T cells (P = 0.0016). These results suggested that GTE might attenuate prolonged JNK-induced AICD.
Fig. 5

GTE blocks prolonged JNK-induced AICD. a Jurkat cells were treated with GTE, sodium orthovanadate (V; 1.5 mM), and/or PMA/ionomycin (P/I; 50/80 ng/mL) for 24 h. The cells were collected and stained with PI in a hypotonic solution. Apoptotic cells were analyzed by flow cytometry. Data were assessed with FlowJo software. b CD4 T cells were isolated from mouse spleen, activated with anti-CD3/CD28 antibodies, and cultured in the presence of IL-2. The activated T cells were re-activated by 0.5 μg/mL anti-CD3 antibody at day 5 and then harvested for an apoptosis assay. The left panel is the original apoptosis data. The right panel is quantitative data. The extent of the sub-G0/G1 peak representing apoptotic cells was measured by gating on cells in the region below the G0/G1 peak. A significant difference from the control is indicated as **P < 0.01

Discussion

Several studies have investigated the anti-inflammatory mechanism of GTE, but all of them have focused on GTE effects in activated myeloid lineage macrophages [10, 11]. However, the inflammatory effect of GTE on T cells is still unknown. Cells of the adaptive immune system, especially T cells, mediate the tissue damage of some inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease [1]. In the present study, we found that GTE suppressed T cell activation in both Jurkat T cells and in human PBMCs (Fig. 1). This suppressive effect was not caused by cytotoxicity of GTE in T cells (Fig. 2).

Previous studies [4, 7] have reported that GTE possessed an anti-cancer activity. GTE showed cytotoxicity in breast cancer cell lines (MDA-MB-231 and MCF-7) and hepatoma cell lines (HepG2 and Hep3B) [4]. The IC50 doses of GTE in these susceptible cell lines are 20–30 μg/mL [4]. Our data suggest that PBMCs and Jurkat T cells were resistant to GTE-induced cytotoxicity (Fig. 2).

Ha et al. [12] reported that GTE at a high dose, but not a low dose, inhibited NF-κB activation. In our study, no NF-κB defect in T cell activation was observed with co-treatment at a low concentration of GTE (Fig. 3), although we did find strong inhibition of JNK activity and slight suppression of p38 activity (Fig. 4). LPS treatment induced activation of NF-κB and JNK/p38 [34], it was possible that a low concentration of GTE might also inhibited JNK activity upon LPS treatment in macrophages.

The mechanism by which GTE regulated JNK activity was unclear. One possible mechanism is through the production of reactive oxygen species (ROS) that induce JNK activation to initiate a downstream signal that amplifies ROS production upon stimulation [35]. Previous studies have shown that GTE has an antioxidant activity [4, 5], and the ability of GTE to modulated JNK might be mediated through its activity as a ROS scavenger by blocking the JNK–ROS activation loop.

In adoptive immunotherapy of cancer treatment, AICD of adoptively transferred T cells represents one of the major hurdles to devise an effective immune intervention therapy. Rescuing T cells from AICD might promote anti-tumor immunity [19, 36]. Previous studies have demonstrated that the modulation effect of JNK prevents AICD of adoptively transferred T cells [20, 23]. Our study demonstrated that GTE inhibited JNK activity upon T cell activation and AICD (Figs. 4, 5b). The mechanism of AICD inhibition by GTE might be mediated through modulation of prolonged JNK phosphorylation in activated T cells. In addition to its roles in cell activation and AICD in the immune system, JNK has been shown to be involved in other stress signaling pathways such as those in response to ultraviolet and γ irradiation [37]. Hence, our findings of the effects of GTE on JNK modulation indicate that GTE may have regulatory effects on other cellular responses.

Conclusion

GTE inhibited T cell activation of Jurkat cells and freshly prepared human PBMCs due to suppression of JNK activity. Furthermore, GTE inhibited AICD by blocking prolonged JNK phosphorylation in activated T cells. Taken together, the anti-inflammatory effects exerted by GTE were mediated via suppression of JNK phosphorylation in T cell activation.

Notes

Abbreviations

AICD: 

activation-induced cell death

CPM: 

counts per minute

CTLs: 

cytotoxic T lymphocytes

DAG: 

diacylglycerol

DMSO: 

dimethyl sulfoxide

ERK: 

extracellular signal-regulated kinase

FBS: 

fetal bovine serum

GT: 

Glossogyne tenuifolia

GTE: 

Glossogyne tenuifolia ethanol extract

HBSS: 

Hank’s balanced salt solution

HRP: 

horseradish peroxidase

IκB: 

nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor

IL-2: 

interleukin-2

IP3: 

inositol trisphosphate

ITS: 

internal transcribed spacer

JNK: 

c-Jun N-terminal kinases

LPS: 

lipopolysaccharide

MAPKs: 

mitogen-activated protein kinases

MFI: 

mean fluorescence intensity

Na3VO4

sodium orthovanadate

NF-κB: 

nuclear factor kappa-light-chain-enhancer of activated B cells

PBMCs: 

peripheral blood mononuclear cells

PBS: 

phosphate buffered saline

PHA: 

phytohemagglutinin

PI: 

propidium iodide

P/I: 

PMA/ionomycin

PKC: 

protein kinase C

PMA: 

12-O-tetradodecanoyl-phorbol-13-acetate

SD: 

standard deviation

TCR: 

T cell receptor

Declarations

Authors’ contributions

LWF, JYH and TST conceived and designed the study. TST performed the flow cytometry experiments. LWF and TST performed the biological experiments. LWF, TST and SCH interpreted the results. TSH, HFH and CJL performed the statistical analysis. LWF, JYH and TST wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the National Science Council, Taiwan (NSC 97-2313-B-214-001-MY3-002), and I-Shou University, Taiwan (ISU101-04-06 and ISU-103-01-E-01).

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The study was approved by the Institutional Review Board of the Research Ethics Committee of National Health Research Institutes. All blood donors signed the consent to participate.

Funding

This work was funded by the National Science Council, Taiwan (NSC 97-2313-B-214-001-MY3-002), and I-Shou University, Taiwan (ISU101-04-06 and ISU-103-01-E-01).

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Nutrition, I-Shou University
(2)
Department of Medical Research, E-Da Hospital
(3)
School of Medicine for International Students, I-Shou University
(4)
National Institute of Infectious Diseases and Vaccinology, NHRI
(5)
Department of Medical Research, Show-Chwan Memorial Hospital
(6)
Graduate Institute of Biotechnology, Chinese Culture University
(7)
Department of Leisure and Recreation Management, Da-Yeh University

References

  1. Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010;140:935–50.View ArticlePubMedPubMed CentralGoogle Scholar
  2. Anonymous. Zhong Hua Ben Cao (China Herbal), vol. 7. Shanghai: Shanghai Science and Technology; 1999.Google Scholar
  3. Xu HY. Illustrations of Chinese herbs in Taiwan. Taiwan: Committee on Chinese Medicine and Pharmacy, Department of Health, Executive Yuan; 1972.Google Scholar
  4. Hsu HF, Houng JY, Chang CL, Wu CC, Chang FR, Wu YC. Antioxidant activity, cytotoxicity, and DNA information of Glossogyne tenuifolia. J Agric Food Chem. 2005;53:6117–25.View ArticlePubMedGoogle Scholar
  5. Wu MJ, Huang CL, Lian TW, Kou MC, Wang L. Antioxidant activity of Glossogyne tenuifolia. J Agric Food Chem. 2005;53:6305–12.View ArticlePubMedGoogle Scholar
  6. Yang JH, Tsai SY, Han CM, Shih CC, Mau JL. Antioxidant properties of Glossogyne tenuifolia. Am J Chin Med. 2006;34:707–20.View ArticlePubMedGoogle Scholar
  7. Hsu HF, Wu YC, Chang CC, Houng JY. Apoptotic effects of bioactive fraction isolated from Glossogyne tenuifolia on A549 human lung cancer cells. J Taiwan Inst Chem Eng. 2011;42(4):556–62.View ArticleGoogle Scholar
  8. Wang CP, Houng JY, Hsu HF, Chen HJ, Huang B, Hung WC, Yu TH, Chiu CA, Lu LF, Hsu CC. Glossogyne tenuifolia enhances posttranslational S-nitrosylation of proteins in vascular endothelial cells. Taiwania. 2011;56(2):97–104.Google Scholar
  9. Wang SW, Kuo HC, Hsu HF, Tu YK, Cheng TT, Houng JY. Inhibitory activity on RANKL-mediated osteoclastogenesis of Glossogyne tenuifolia extract. J Funct Foods. 2014;6:215–23.View ArticleGoogle Scholar
  10. Wu MJ, Wang L, Ding HY, Weng CY, Yen JH. Glossogyne tenuifolia acts to inhibit inflammatory mediator production in a macrophage cell line by downregulating LPS-induced NF-κB. J Biomed Sci. 2004;11:186–99.PubMedGoogle Scholar
  11. Wu MJ, Weng CY, Ding HY, Wu PJ. Anti-inflammatory and antiviral effects of Glossogyne tenuifolia. Life Sci. 2005;76:1135–46.View ArticlePubMedGoogle Scholar
  12. Ha CL, Weng CY, Wang L, Lian TW, Wu MJ. Immunomodulatory effect of Glossogyne tenuifolia in murine peritoneal macrophages and splenocytes. J Ethnopharmacol. 2006;107:116–25.View ArticlePubMedGoogle Scholar
  13. Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev. 2009;29:767–820.View ArticlePubMedGoogle Scholar
  14. Paul S, Schaefer BC. A new look at T cell receptor signaling to nuclear factor-κB. Trends Immunol. 2013;34:269–81.View ArticlePubMedPubMed CentralGoogle Scholar
  15. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20:55–72.View ArticlePubMedGoogle Scholar
  16. Zhang J, Xu X, Liu Y. Activation-induced cell death in T cells and autoimmunity. Cell Mol Immunol. 2004;1:186–92.PubMedGoogle Scholar
  17. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.View ArticlePubMedGoogle Scholar
  18. Kunkele A, Johnson AJ, Rolczynski LS, Chang CA, Hoglund V, Kelly-Spratt KS, Jensen MC. Functional tuning of CARs reveals signaling threshold above which CD8+ CTL antitumor potency is attenuated due to cell Fas-FasL-dependent AICD. Cancer Immunol Res. 2015;3:368–79.View ArticlePubMedGoogle Scholar
  19. Cao K, Wang G, Li W, Zhang L, Wang R, Huang Y, Du L, Jiang J, Wu C, He X, Roberts AI, Li F, Rabson AB, Wang Y, Shi Y. Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity. Oncogene. 2015;34:5960–70.View ArticlePubMedPubMed CentralGoogle Scholar
  20. Mehrotra S, Chhabra A, Chattopadhyay S, Dorsky DI, Chakraborty NG, Mukherji B. Rescuing melanoma epitope-specific cytolytic T lymphocytes from activation-induced cell death, by SP600125, an inhibitor of JNK: implications in cancer immunotherapy. J Immunol. 2004;173:6017–24.View ArticlePubMedGoogle Scholar
  21. Friedlein G, El Hage F, Vergnon I, Richon C, Saulnier P, Lecluse Y, Caignard A, Boumsell L, Bismuth G, Chouaib S, Mami-Chouaib F. Human CD5 protects circulating tumor antigen-specific CTL from tumor-mediated activation-induced cell death. J Immunol. 2007;178:6821–7.View ArticlePubMedGoogle Scholar
  22. Chhabra A. Mitochondria-centric activation induced cell death of cytolytic T lymphocytes and its implications for cancer immunotherapy. Vaccine. 2010;28:4566–72.View ArticlePubMedGoogle Scholar
  23. Chhabra A, Mehrotra S, Chakraborty NG, Dorsky DI, Mukherji B. Activation-induced cell death of human melanoma specific cytotoxic T lymphocytes is mediated by apoptosis-inducing factor. Eur J Immunol. 2006;36:3167–74.View ArticlePubMedGoogle Scholar
  24. Mehrotra S, Chhabra A, Hegde U, Chakraborty NG, Mukherji B. Inhibition of c-Jun N-terminal kinase rescues influenza epitope-specific human cytolytic T lymphocytes from activation-induced cell death. J Leukoc Biol. 2007;81:539–47.View ArticlePubMedGoogle Scholar
  25. Ferrante A, Thong YH. A rapid one-step procedure for purification of mononuclear and polymorphonuclear leukocytes from human blood using a modification of the Hypaque-Ficoll technique. J Immunol Methods. 1978;24:389–93.View ArticlePubMedGoogle Scholar
  26. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139:271–9.View ArticlePubMedGoogle Scholar
  27. Chen YR, Wang X, Templeton D, Davis RJ, Tan TH. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem. 1996;271:31929–36.View ArticlePubMedGoogle Scholar
  28. Koyasu S, Suzuki G, Asano Y, Osawa H, Diamantstein T, Yahara I. Signals for activation and proliferation of murine T lymphocyte clones. J Biol Chem. 1987;262:4689–95.PubMedGoogle Scholar
  29. Planelles D, Hernandez-Godoy J, Gonzalez-Molina A. Differential effects of the calcium ionophore A23187 and the phorbol ester PMA on lymphocyte proliferation. Agents Actions. 1992;35:238–44.View ArticlePubMedGoogle Scholar
  30. Mardiney M 3rd, Brown MR, Fleisher TA. Measurement of T-cell CD69 expression: a rapid and efficient means to assess mitogen- or antigen-induced proliferative capacity in normals. Cytometry. 1996;26:305–10.View ArticlePubMedGoogle Scholar
  31. Ziegler SF, Ramsdell F, Alderson MR. The activation antigen CD69. Stem Cells. 1994;12:456–65.View ArticlePubMedGoogle Scholar
  32. Hsu HF, Houng JY, Kuo CF, Tsao N, Wu YC. Glossogin, a novel phenylpropanoid from Glossogyne tenuifolia, induced apoptosis in A549 lung cancer cells. Food Chem Toxicol. 2008;46:3785–91.View ArticlePubMedGoogle Scholar
  33. Neumann M, Naumann M. Beyond IκBs: alternative regulation of NF-κB activity. FASEB J. 2007;21:2642–54.View ArticlePubMedGoogle Scholar
  34. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94.View ArticlePubMedGoogle Scholar
  35. Chambers JW, LoGrasso PV. Mitochondrial c-Jun N-terminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation. J Biol Chem. 2011;286:16052–62.View ArticlePubMedPubMed CentralGoogle Scholar
  36. Tabbekh M, Franciszkiewicz K, Haouas H, Lecluse Y, Benihoud K, Raman C, Mami-Chouaib F. Rescue of tumor-infiltrating lymphocytes from activation-induced cell death enhances the antitumor CTL response in CD5-deficient mice. J Immunol. 2011;187:102–9.View ArticlePubMedGoogle Scholar
  37. Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta. 2007;1773:1341–8.View ArticlePubMedPubMed CentralGoogle Scholar

Copyright

© The Author(s) 2017

Advertisement