Alam P, Maliken BD, Jones SM, et al. Cardiac remodeling and repair: recent approaches, advancements, and future perspective. Int J Mol Sci. 2021;22(23):13104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verheule S, Schotten U. Electrophysiological consequences of cardiac fibrosis. Cells. 2021;10(11):3220.
Article
PubMed
PubMed Central
Google Scholar
Díez J. Mechanisms of cardiac fibrosis in hypertension. J Clin Hypertens (Greenwich). 2007;9(7):546–50.
Article
Google Scholar
Zhang QJ, He Y, Li Y, et al. Matricellular protein Cilp1 promotes myocardial fibrosis in response to myocardial infarction. Circ Res. 2021;129(11):1021–35.
Article
CAS
PubMed
Google Scholar
González A, Schelbert EB, Díez J, et al. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J Am Coll Cardiol. 2018;71(15):1696–706.
Article
PubMed
Google Scholar
Webber M, Jackson SP, Moon JC, et al. Myocardial fibrosis in heart failure: anti-fibrotic therapies and the role of cardiovascular magnetic resonance in drug trials. Cardiol Ther. 2020;9(2):363–76.
Article
PubMed
PubMed Central
Google Scholar
Junttila MJ, Holmström L, Pylkäs K, et al. Primary myocardial fibrosis as an alternative phenotype pathway of inherited cardiac structural disorders. Circulation. 2018;137(25):2716–26.
Article
CAS
PubMed
Google Scholar
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gyöngyösi M, Winkler J, Ramos I, et al. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail. 2017;19(2):177–91.
Article
PubMed
Google Scholar
Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 2019;65:2–15.
Article
CAS
PubMed
Google Scholar
Horn MA, Trafford AW. Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J Mol Cell Cardiol. 2016;93:175–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cowling RT, Kupsky D, Kahn AM, et al. Mechanisms of cardiac collagen deposition in experimental models and human disease. Transl Res. 2019;209:138–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karsdal MA, Nielsen SH, Leeming DJ, et al. The good and the bad collagens of fibrosis—their role in signaling and organ function. Adv Drug Deliv Rev. 2017;121:43–56.
Article
CAS
PubMed
Google Scholar
Sanderson JE, Lai KB, Shum IO, et al. Transforming growth factor-beta(1) expression in dilated cardiomyopathy. Heart. 2001;86(6):701–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Budi EH, Schaub JR, Decaris M, et al. TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities. J Pathol. 2021;254(4):358–73.
Article
CAS
PubMed
Google Scholar
Pan X, Chen Z, Huang R, et al. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts. PLoS ONE. 2013;8(4):e60335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hwang HS, Lee MH, Kim HA. TGF-β1-induced expression of collagen type II and ACAN is regulated by 4E-BP1, a repressor of translation. Faseb j. 2020;34(7):9531–46.
Article
CAS
PubMed
Google Scholar
Sui X, Wei H, Wang D. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction. J Cell Mol Med. 2015;19(8):1773–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao L, Chen Y, Lu L, et al. Angiotensin II upregulates fibroblast-myofibroblast transition through Cx43-dependent CaMKII and TGF-β1 signaling in neonatal rat cardiac fibroblasts. Acta Biochim Biophys Sin (Shanghai). 2018;50(9):843–52.
Article
CAS
Google Scholar
Wang G, Wu H, Liang P, et al. Fus knockdown inhibits the profibrogenic effect of cardiac fibroblasts induced by angiotensin II through targeting Pax3 thereby regulating TGF-β1/Smad pathway. Bioengineered. 2021;12(1):1415–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge Z, Chen Y, Wang B, et al. MFGE8 attenuates Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway. J Mol Cell Cardiol. 2020;139:164–75.
Article
CAS
PubMed
Google Scholar
Zhu Y, Tao H, Jin C, et al. Transforming growth factor-β1 induces type II collagen and aggrecan expression via activation of extracellular signal-regulated kinase 1/2 and Smad2/3 signaling pathways. Mol Med Rep. 2015;12(4):5573–9.
Article
CAS
PubMed
Google Scholar
Hinz B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. 2015;47:54–65.
Article
CAS
PubMed
Google Scholar
Chen Z, Zhang N, Chu HY, et al. Connective tissue growth factor: from molecular understandings to drug discovery. Front Cell Dev Biol. 2020;8:593269.
Article
PubMed
PubMed Central
Google Scholar
Chung AC, Zhang H, Kong YZ, et al. Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. J Am Soc Nephrol. 2010;21(2):249–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ihn H. Pathogenesis of fibrosis: role of TGF-beta and CTGF. Curr Opin Rheumatol. 2002;14(6):681–5.
Article
CAS
PubMed
Google Scholar
Ma ZG, Yuan YP, Wu HM, et al. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci. 2018;14(12):1645–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dean RG, Balding LC, Candido R, et al. Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem. 2005;53(10):1245–56.
Article
CAS
PubMed
Google Scholar
Maass PG, Luft FC, Bähring S. Long non-coding RNA in health and disease. J Mol Med (Berl). 2014;92(4):337–46.
Article
CAS
Google Scholar
Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73(13):2491–509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuehl C, Frey N. Long noncoding RNAs in heart disease. In: Backs J, Mckinsey TA, editors. Epigenetics in cardiac disease. Cham: Springer; 2016. p. 297–316.
Chapter
Google Scholar
Zhang X, Wang W, Zhu W, et al. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci. 2019;20(22):5573.
Article
CAS
PubMed Central
Google Scholar
Chen Y, Li Z, Chen X, et al. Long non-coding RNAs: from disease code to drug role. Acta Pharm Sin B. 2021;11(2):340–54.
Article
CAS
PubMed
Google Scholar
Zhang Y, Luo G, Zhang Y, et al. Critical effects of long non-coding RNA on fibrosis diseases. Exp Mol Med. 2018;50(1):e428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Chen M, Chen J, et al. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. 2017. Biosci Rep. https://doi.org/10.1042/BSR20170036.
Wang XM, Li XM, Song N, et al. Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomed Pharmacother. 2019;118:109208.
Article
CAS
PubMed
Google Scholar
Yan B, Yao J, Liu JY, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;116(7):1143–56.
Article
CAS
PubMed
Google Scholar
Zhu XH, Yuan YX, Rao SL, et al. LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci. 2016;20(17):3653–60.
PubMed
Google Scholar
Wu Q, Han L, Yan W, et al. miR-489 inhibits silica-induced pulmonary fibrosis by targeting MyD88 and Smad3 and is negatively regulated by lncRNA CHRF. Sci Rep. 2016;6:30921.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Yan KP, Liu XC, et al. Valsartan regulates TGF-β/Smads and TGF-β/p38 pathways through lncRNA CHRF to improve doxorubicin-induced heart failure. Arch Pharm Res. 2018;41(1):101–9.
Article
CAS
PubMed
Google Scholar
Liang H, Pan Z, Zhao X, et al. LncRNA PFL contributes to cardiac fibrosis by acting as a competing endogenous RNA of let-7d. Theranostics. 2018;8(4):1180–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo M, Liu T, Zhang S, et al. RASSF1-AS1, an antisense lncRNA of RASSF1A, inhibits the translation of RASSF1A to exacerbate cardiac fibrosis in mice. Cell Biol Int. 2019;43(10):1163–73.
Article
CAS
PubMed
Google Scholar
Zheng D, Zhang Y, Hu Y, et al. Long noncoding RNA Crnde attenuates cardiac fibrosis via Smad3-Crnde negative feedback in diabetic cardiomyopathy. FEBS J. 2019;286(9):1645–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ying W, Zhao WS, Li D, et al. The beneficial effects of electroacupuncture at PC6 acupoints (Neiguan) on myocardial ischemia in ASIC3−/− mice. J Acupunct Meridian Stud. 2018;11(3):88–96.
Article
Google Scholar
Tsou MT, Huang CH, Chiu JH. Electroacupuncture on PC6 (Neiguan) attenuates ischemia/reperfusion injury in rat hearts. Am J Chin Med. 2004;32(6):951–65.
Article
PubMed
Google Scholar
Yan H, Sheng FL, Chen JH, et al. Electro-acupuncture at Neiguan pretreatment alters genome-wide gene expressions and protects rat myocardium against ischemia-reperfusion. Molecules. 2014;19(10):16158–78.
Article
CAS
Google Scholar
Zeng Q, He H, Wang XB, et al. Electroacupuncture preconditioning improves myocardial infarction injury via enhancing AMPK-dependent autophagy in rats. Biomed Res Int. 2018;2018:1238175.
PubMed
PubMed Central
Google Scholar
Ma L, Cui B, Shao Y, et al. Electroacupuncture improves cardiac function and remodeling by inhibition of sympathoexcitation in chronic heart failure rats. Am J Physiol Heart Circ Physiol. 2014;306(10):H1464–71.
Article
CAS
PubMed
Google Scholar
Hinderer S, Schenke-Layland K. Cardiac fibrosis—a short review of causes and therapeutic strategies. Adv Drug Deliv Rev. 2019;146:77–82.
Article
CAS
PubMed
Google Scholar
Xin JJ, Dai QF, Lu FY, et al. Antihypertensive and antifibrosis effects of acupuncture at PC6 acupoints in spontaneously hypertensive rats and the underlying mechanisms. Front Physiol. 2020;11:734.
Article
PubMed
PubMed Central
Google Scholar
Brooks WW, Conrad CH. Isoproterenol-induced myocardial injury and diastolic dysfunction in mice: structural and functional correlates. Comp Med. 2009;59(4):339–43.
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Luo H, Bu D, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Y, Pan X, Shen HB. lncLocator 2.0: a cell-line-specific subcellular localization predictor for long non-coding RNAs with interpretable deep learning. Bioinformatics. 2021;37(16):2308–16.
Article
CAS
Google Scholar
Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.
Article
PubMed Central
Google Scholar
Yao L, Zhou B, You L, et al. LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis. Mol Biol Rep. 2020;47(4):2605–17.
Article
CAS
PubMed
Google Scholar
Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22(1):22–33.
Article
CAS
PubMed
Google Scholar
Ma MZ, Zhang Y, Weng MZ, et al. Long noncoding RNA GCASPC, a target of miR-17-3p, negatively regulates pyruvate carboxylase-dependent cell proliferation in gallbladder cancer. Cancer Res. 2016;76(18):5361–71.
Article
CAS
PubMed
Google Scholar
Bellucci M, Agostini F, Masin M, et al. Predicting protein associations with long noncoding RNAs. Nat Methods. 2011;8(6):444–5.
Article
CAS
PubMed
Google Scholar
Lu Q, Ren S, Lu M, et al. Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics. 2013;14:651.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo X, Wang Y, Zheng D, et al. LncRNA-MIAT promotes neural cell autophagy and apoptosis in ischemic stroke by up-regulating REDD1. Brain Res. 2021;1763:147436.
Article
CAS
PubMed
Google Scholar
Lee SJ, Yang EK, Kim SG. Peroxisome proliferator-activated receptor-gamma and retinoic acid X receptor alpha represses the TGFbeta1 gene via PTEN-mediated p70 ribosomal S6 kinase-1 inhibition: role for Zf9 dephosphorylation. Mol Pharmacol. 2006;70(1):415–25.
Article
CAS
PubMed
Google Scholar
Yang C, Zhang Y, Yang B. MIAT, a potent CVD-promoting lncRNA. Cell Mol Life Sci. 2021;79(1):43.
Article
PubMed
CAS
Google Scholar
Sun C, Huang L, Li Z, et al. Long non-coding RNA MIAT in development and disease: a new player in an old game. J Biomed Sci. 2018;25(1):23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang Q, Shan K, Qun-Wang X, et al. Long non-coding RNA-MIAT promotes neurovascular remodeling in the eye and brain. Oncotarget. 2016;7(31):49688–98.
Article
PubMed
PubMed Central
Google Scholar
Zhang YY, Liu QG, Xu M, et al. Effects of twirling-rotating reinforcing and reducing technique for left ventricular morphology, concentration of ET-1 and expression of type I, III collagen mRNA in spontaneous hypertensive rats. Zhongguo Zhen Jiu. 2014;34(8):791–7.
CAS
PubMed
Google Scholar
Zhang J, Jia XH, Xu ZW, et al. Improved mesenchymal stem cell survival in ischemic heart through electroacupuncture. Chin J Integr Med. 2013;19(8):573–81.
Article
CAS
PubMed
Google Scholar
Fu Y, Li J, Wu S, et al. Electroacupuncture pretreatment promotes angiogenesis via hypoxia-inducible factor 1α and vascular endothelial growth factor in a rat model of chronic myocardial ischemia. Acupunct Med. 2021;39(4):367–75.
Article
PubMed
Google Scholar
Zhou Q, Pan LL, Xue R, et al. The anti-microbial peptide LL-37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure. Theranostics. 2020;10(14):6167–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang L, Pin L, Zhu S, et al. Plantamajoside attenuates isoproterenol-induced cardiac hypertrophy associated with the HDAC2 and AKT/GSK-3β signaling pathway. Chem Biol Interact. 2019;307:21–8.
Article
CAS
PubMed
Google Scholar
Ning BB, Zhang Y, Wu DD, et al. Luteolin-7-diglucuronide attenuates isoproterenol-induced myocardial injury and fibrosis in mice. Acta Pharmacol Sin. 2017;38(3):331–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang L, Fan X, et al. Captopril attenuates TAC-induced heart failure via inhibiting Wnt3a/β-catenin and Jak2/Stat3 pathways. Biomed Pharmacother. 2019;113:108780.
Article
CAS
PubMed
Google Scholar
Yao Y, Hu C, Song Q, et al. ADAMTS16 activates latent TGF-β, accentuating fibrosis and dysfunction of the pressure-overloaded heart. Cardiovasc Res. 2020;116(5):956–69.
Article
CAS
PubMed
Google Scholar
Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res. 2014;115(7):668–77.
Article
CAS
PubMed
Google Scholar
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193(3):651–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteom Bioinform. 2016;14(1):42–54.
Article
Google Scholar
Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye ZM, Yang S, Xia YP, et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis. 2019;10(2):138.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qu X, Du Y, Shu Y, et al. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep. 2017;7:42657.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao X, Qin J, Wan C, et al. ADSC exosomes mediate lncRNA-MIAT alleviation of endometrial fibrosis by regulating miR-150-5p. Front Genet. 2021;12:679643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bishop-Bailey D, Wray J. Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation. Prostaglandins Other Lipid Mediat. 2003;71(1–2):1–22.
Article
CAS
PubMed
Google Scholar
Deng K, Ren C, Fan Y, et al. YAP1 regulates PPARG and RXR alpha expression to affect the proliferation and differentiation of ovine preadipocyte. J Cell Biochem. 2019;120(12):19578–89.
Article
CAS
PubMed
Google Scholar
Holmbeck SM, Dyson HJ, Wright PE. DNA-induced conformational changes are the basis for cooperative dimerization by the DNA binding domain of the retinoid X receptor. J Mol Biol. 1998;284(3):533–9.
Article
CAS
PubMed
Google Scholar
Kim SJ, Glick A, Sporn MB, et al. Characterization of the promoter region of the human transforming growth factor-beta 1 gene. J Biol Chem. 1989;264(1):402–8.
Article
CAS
PubMed
Google Scholar
Kim Y, Ratziu V, Choi SG, et al. Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem. 1998;273(50):33750–8.
Article
CAS
PubMed
Google Scholar